DEVELOPMENT... OpenML
Data
Red_wine

Red_wine

active ARFF Public Domain (CC0) Visibility: public Uploaded 12-11-2021 by Renee
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
red wine dataset

66 features

Area_under_PRCnumeric0 unique values
0 missing
Weighted_avg_matthews_correlationnumeric0 unique values
0 missing
Weighted_avg_F_measurenumeric0 unique values
0 missing
Weighted_avg_IR_recallnumeric0 unique values
0 missing
Weighted_avg_IR_precisionnumeric0 unique values
0 missing
Weighted_avg_false_negative_ratenumeric0 unique values
0 missing
Weighted_avg_true_negative_ratenumeric0 unique values
0 missing
Weighted_avg_false_positive_ratenumeric0 unique values
0 missing
Weighted_avg_true_positive_ratenumeric0 unique values
0 missing
Weighted_avg_area_under_ROCnumeric0 unique values
0 missing
Area_under_ROCnumeric0 unique values
0 missing
Matthews_correlationnumeric0 unique values
0 missing
F_measurenumeric0 unique values
0 missing
IR_recallnumeric0 unique values
0 missing
IR_precisionnumeric0 unique values
0 missing
Num_false_negativesnumeric0 unique values
0 missing
False_negative_ratenumeric0 unique values
0 missing
Num_true_negativesnumeric0 unique values
0 missing
Weighted_avg_area_under_PRCnumeric0 unique values
0 missing
Unweighted_macro_avg_F_measurenumeric0 unique values
0 missing
Unweighted_micro_avg_F_measurenumeric0 unique values
0 missing
Elapsed_Time_trainingnumeric0 unique values
0 missing
Elapsed_Time_testingnumeric0 unique values
0 missing
UserCPU_Time_trainingnumeric0 unique values
0 missing
UserCPU_Time_testingnumeric0 unique values
0 missing
UserCPU_Time_millis_trainingnumeric0 unique values
0 missing
UserCPU_Time_millis_testingnumeric0 unique values
0 missing
Serialized_Model_Sizenumeric0 unique values
0 missing
Serialized_Train_Set_Sizenumeric0 unique values
0 missing
Serialized_Test_Set_Sizenumeric0 unique values
0 missing
Coverage_of_Test_Cases_By_Regionsnumeric0 unique values
0 missing
Size_of_Predicted_Regionsnumeric0 unique values
0 missing
Summarystring0 unique values
0 missing
Number_correctnumeric0 unique values
0 missing
Root_mean_squared_errornumeric0 unique values
0 missing
Mean_absolute_errornumeric0 unique values
0 missing
Kappa_statisticnumeric0 unique values
0 missing
Percent_unclassifiednumeric0 unique values
0 missing
Percent_incorrectnumeric0 unique values
0 missing
Percent_correctnumeric0 unique values
0 missing
Number_unclassifiednumeric0 unique values
0 missing
Number_incorrectnumeric0 unique values
0 missing
Relative_absolute_errornumeric0 unique values
0 missing
Number_of_testing_instancesnumeric0 unique values
0 missing
Number_of_training_instancesnumeric0 unique values
0 missing
Date_timenumeric0 unique values
0 missing
Key_Scheme_version_IDstring0 unique values
0 missing
Key_Scheme_optionsstring0 unique values
0 missing
Key_Schemestring0 unique values
0 missing
Key_Runstring0 unique values
0 missing
Key_Datasetstring0 unique values
0 missing
Root_relative_squared_errornumeric0 unique values
0 missing
SF_prior_entropynumeric0 unique values
0 missing
SF_scheme_entropynumeric0 unique values
0 missing
SF_entropy_gainnumeric0 unique values
0 missing
SF_mean_prior_entropynumeric0 unique values
0 missing
SF_mean_scheme_entropynumeric0 unique values
0 missing
SF_mean_entropy_gainnumeric0 unique values
0 missing
KB_informationnumeric0 unique values
0 missing
KB_mean_informationnumeric0 unique values
0 missing
KB_relative_informationnumeric0 unique values
0 missing
True_positive_ratenumeric0 unique values
0 missing
Num_true_positivesnumeric0 unique values
0 missing
False_positive_ratenumeric0 unique values
0 missing
Num_false_positivesnumeric0 unique values
0 missing
True_negative_ratenumeric0 unique values
0 missing

19 properties

0
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
60
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of nominal attributes.
Average class difference between consecutive instances.
90.91
Percentage of numeric attributes.
Percentage of missing values.
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
Number of instances belonging to the least frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the most frequent class.
0
Number of attributes divided by the number of instances.

0 tasks

Define a new task