DEVELOPMENT... OpenML
Data
CreditCardSubset

CreditCardSubset

active ARFF Publicly available Visibility: public Uploaded 02-12-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Om algos te testen

31 features

Class (target)nominal2 unique values
0 missing
V15numeric13789 unique values
0 missing
Amountnumeric5425 unique values
0 missing
V28numeric13558 unique values
0 missing
V27numeric13639 unique values
0 missing
V26numeric13749 unique values
0 missing
V25numeric13765 unique values
0 missing
V24numeric13773 unique values
0 missing
V23numeric13725 unique values
0 missing
V22numeric13789 unique values
0 missing
V21numeric13731 unique values
0 missing
V20numeric13728 unique values
0 missing
V19numeric13787 unique values
0 missing
V18numeric13780 unique values
0 missing
V17numeric13782 unique values
0 missing
V16numeric13786 unique values
0 missing
Timenumeric13261 unique values
0 missing
V14numeric13783 unique values
0 missing
V13numeric13793 unique values
0 missing
V12numeric13783 unique values
0 missing
V11numeric13793 unique values
0 missing
V10numeric13768 unique values
0 missing
V9numeric13795 unique values
0 missing
V8numeric13758 unique values
0 missing
V7numeric13791 unique values
0 missing
V6numeric13796 unique values
0 missing
V5numeric13798 unique values
0 missing
V4numeric13796 unique values
0 missing
V3numeric13806 unique values
0 missing
V2numeric13794 unique values
0 missing
V1numeric13796 unique values
0 missing

107 properties

14240
Number of instances (rows) of the dataset.
31
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
30
Number of numeric attributes.
1
Number of nominal attributes.
1
Average class difference between consecutive instances.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Entropy of the target attribute values.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
99.84
Percentage of instances belonging to the most frequent class.
14217
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
459.19
Maximum kurtosis among attributes of the numeric type.
94536.8
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
11.34
Maximum skewness among attributes of the numeric type.
47496.7
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
60.06
Mean kurtosis among attributes of the numeric type.
3154.27
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
-0.27
Mean skewness among attributes of the numeric type.
1592.84
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.29
Minimum kurtosis among attributes of the numeric type.
-0.01
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-7.56
Minimum skewness among attributes of the numeric type.
0.33
Minimum standard deviation of attributes of the numeric type.
0.16
Percentage of instances belonging to the least frequent class.
23
Number of instances belonging to the least frequent class.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.02
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
3.23
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
96.77
Percentage of numeric attributes.
3.23
Percentage of nominal attributes.
First quartile of entropy among attributes.
1.54
First quartile of kurtosis among attributes of the numeric type.
-0
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-1.85
First quartile of skewness among attributes of the numeric type.
0.72
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
14.08
Second quartile (Median) of kurtosis among attributes of the numeric type.
-0
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.26
Second quartile (Median) of skewness among attributes of the numeric type.
0.97
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
93.42
Third quartile of kurtosis among attributes of the numeric type.
0
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.63
Third quartile of skewness among attributes of the numeric type.
1.36
Third quartile of standard deviation of attributes of the numeric type.
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.51
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.51
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.51
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

15 tasks

43 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: area_under_roc_curve - target_feature: Class - cost matrix: [[0,1],[500,0]]
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task