DEVELOPMENT... OpenML
Data
test_dataset

test_dataset

active ARFF Publicly available Visibility: public Uploaded 23-03-2019 by William Patterson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Test dataset

61 features

class (target)numeric2 unique values
0 missing
V47numeric17 unique values
0 missing
V33numeric7461 unique values
14 missing
V34numeric5383 unique values
14 missing
V35numeric6702 unique values
14 missing
V36numeric6648 unique values
14 missing
V37numeric7262 unique values
14 missing
V38numeric6405 unique values
14 missing
V39numeric4767 unique values
14 missing
V40numeric5895 unique values
14 missing
V41numeric6944 unique values
14 missing
V42numeric15 unique values
0 missing
V43numeric20 unique values
0 missing
V44numeric15 unique values
0 missing
V45numeric16 unique values
0 missing
V46numeric9 unique values
0 missing
V31numeric7413 unique values
14 missing
V48numeric16 unique values
0 missing
V49numeric17 unique values
0 missing
V50numeric13 unique values
0 missing
V51numeric11 unique values
0 missing
V52numeric13 unique values
0 missing
V53numeric15 unique values
0 missing
V54numeric9 unique values
0 missing
V55numeric11 unique values
0 missing
V56numeric14 unique values
0 missing
V57numeric14 unique values
0 missing
V58numeric11 unique values
0 missing
V59numeric9 unique values
0 missing
V60numeric9 unique values
0 missing
V61numeric10 unique values
0 missing
V16numeric13 unique values
0 missing
V2numeric15 unique values
0 missing
V3numeric17 unique values
0 missing
V4numeric12 unique values
0 missing
V5numeric10 unique values
0 missing
V6numeric7 unique values
0 missing
V7numeric12 unique values
0 missing
V8numeric16 unique values
0 missing
V9numeric17 unique values
0 missing
V10numeric10 unique values
0 missing
V11numeric11 unique values
0 missing
V12numeric14 unique values
0 missing
V13numeric12 unique values
0 missing
V14numeric9 unique values
0 missing
V15numeric11 unique values
0 missing
V32numeric7973 unique values
14 missing
V17numeric14 unique values
0 missing
V18numeric11 unique values
0 missing
V19numeric6 unique values
0 missing
V20numeric8 unique values
0 missing
V21numeric9 unique values
0 missing
V22numeric7707 unique values
14 missing
V23numeric6800 unique values
14 missing
V24numeric6510 unique values
14 missing
V25numeric6630 unique values
14 missing
V26numeric5282 unique values
14 missing
V27numeric7394 unique values
14 missing
V28numeric6296 unique values
14 missing
V29numeric7337 unique values
14 missing
V30numeric5318 unique values
14 missing

62 properties

15547
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
280
Number of missing values in the dataset.
14
Number of instances with at least one value missing.
61
Number of numeric attributes.
0
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0.09
Percentage of instances having missing values.
0.03
Percentage of missing values.
100
Percentage of numeric attributes.
0
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.52
First quartile of kurtosis among attributes of the numeric type.
0.04
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.25
First quartile of skewness among attributes of the numeric type.
0.03
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
5.32
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.05
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.62
Second quartile (Median) of skewness among attributes of the numeric type.
0.04
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
10.99
Third quartile of kurtosis among attributes of the numeric type.
0.06
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.16
Third quartile of skewness among attributes of the numeric type.
0.05
Third quartile of standard deviation of attributes of the numeric type.
1
Average class difference between consecutive instances.
0.07
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
152.29
Maximum kurtosis among attributes of the numeric type.
1.51
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
10.47
Maximum skewness among attributes of the numeric type.
0.5
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
12.17
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
1.85
Mean skewness among attributes of the numeric type.
0.05
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.05
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

14 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: Custom 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: Test on Training Data - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering - target_feature: test
Define a new task