DEVELOPMENT... OpenML
Data
PC2

PC2

in_preparation ARFF Publicly available Visibility: public Uploaded 23-06-2017 by Kimberly Murphy
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
software fault prediction

37 features

Class (target)nominal2 unique values
0 missing
V20numeric87 unique values
0 missing
V19numeric1012 unique values
0 missing
V21numeric226 unique values
0 missing
V22numeric55 unique values
0 missing
V23numeric983 unique values
0 missing
V24numeric635 unique values
0 missing
V25numeric40 unique values
0 missing
V26numeric25 unique values
0 missing
V27numeric36 unique values
0 missing
V28numeric73 unique values
0 missing
V29numeric56 unique values
0 missing
V30numeric137 unique values
0 missing
V31numeric167 unique values
0 missing
V32numeric69 unique values
0 missing
V33numeric36 unique values
0 missing
V34numeric109 unique values
0 missing
V35numeric165 unique values
0 missing
V36numeric83 unique values
0 missing
V10numeric22 unique values
0 missing
V2numeric28 unique values
0 missing
V3numeric79 unique values
0 missing
V4numeric58 unique values
0 missing
V5numeric36 unique values
0 missing
V6numeric27 unique values
0 missing
V7numeric63 unique values
0 missing
V8numeric23 unique values
0 missing
V9numeric28 unique values
0 missing
V1numeric39 unique values
0 missing
V11numeric43 unique values
0 missing
V12numeric85 unique values
0 missing
V13numeric19 unique values
0 missing
V14nominal2 unique values
0 missing
V15numeric17 unique values
0 missing
V16numeric14 unique values
0 missing
V17numeric866 unique values
0 missing
V18numeric480 unique values
0 missing

62 properties

5589
Number of instances (rows) of the dataset.
37
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
35
Number of numeric attributes.
2
Number of nominal attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
5.41
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
94.59
Percentage of numeric attributes.
5.41
Percentage of nominal attributes.
0.19
First quartile of entropy among attributes.
82.13
First quartile of kurtosis among attributes of the numeric type.
1.12
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
6.31
First quartile of skewness among attributes of the numeric type.
1.89
First quartile of standard deviation of attributes of the numeric type.
0.19
Second quartile (Median) of entropy among attributes.
447.83
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.39
Second quartile (Median) of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
17.64
Second quartile (Median) of skewness among attributes of the numeric type.
5.68
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.19
Third quartile of entropy among attributes.
1195.07
Third quartile of kurtosis among attributes of the numeric type.
7.89
Third quartile of means among attributes of the numeric type.
0
Third quartile of mutual information between the nominal attributes and the target attribute.
27.33
Third quartile of skewness among attributes of the numeric type.
18.93
Third quartile of standard deviation of attributes of the numeric type.
0.99
Average class difference between consecutive instances.
83.25
Mean of means among attributes of the numeric type.
0.04
Entropy of the target attribute values.
0.01
Number of attributes divided by the number of instances.
157.98
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
99.59
Percentage of instances belonging to the most frequent class.
5566
Number of instances belonging to the most frequent class.
0.19
Maximum entropy among attributes.
2756.12
Maximum kurtosis among attributes of the numeric type.
2498.3
Maximum of means among attributes of the numeric type.
0
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
45.84
Maximum skewness among attributes of the numeric type.
27917.17
Maximum standard deviation of attributes of the numeric type.
0.19
Average entropy of the attributes.
703.08
Mean kurtosis among attributes of the numeric type.
2
Number of binary attributes.
0
Average mutual information between the nominal attributes and the target attribute.
760.01
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
17.66
Mean skewness among attributes of the numeric type.
864.54
Mean standard deviation of attributes of the numeric type.
0.19
Minimal entropy among attributes.
-1.02
Minimum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-2.77
Minimum skewness among attributes of the numeric type.
0.15
Minimum standard deviation of attributes of the numeric type.
0.41
Percentage of instances belonging to the least frequent class.
23
Number of instances belonging to the least frequent class.

12 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: area_under_roc_curve - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task