DEVELOPMENT... OpenML
Data
CM1

CM1

in_preparation ARFF Publicly available Visibility: public Uploaded 23-06-2017 by Kimberly Murphy
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
software fault prediction

38 features

Class (target)nominal2 unique values
0 missing
V21numeric105 unique values
0 missing
V20numeric424 unique values
0 missing
V22numeric232 unique values
0 missing
V23numeric39 unique values
0 missing
V24numeric424 unique values
0 missing
V25numeric391 unique values
0 missing
V26numeric52 unique values
0 missing
V27numeric28 unique values
0 missing
V28numeric46 unique values
0 missing
V29numeric76 unique values
0 missing
V30numeric30 unique values
0 missing
V31numeric154 unique values
0 missing
V32numeric181 unique values
0 missing
V33numeric95 unique values
0 missing
V34numeric44 unique values
0 missing
V35numeric149 unique values
0 missing
V36numeric246 unique values
0 missing
V37numeric107 unique values
0 missing
V11numeric28 unique values
0 missing
V2numeric42 unique values
0 missing
V3numeric20 unique values
0 missing
V4numeric35 unique values
0 missing
V5numeric67 unique values
0 missing
V6numeric46 unique values
0 missing
V7numeric32 unique values
0 missing
V8numeric33 unique values
0 missing
V9numeric28 unique values
0 missing
V10numeric36 unique values
0 missing
V1numeric59 unique values
0 missing
V12numeric54 unique values
0 missing
V13numeric86 unique values
0 missing
V14numeric17 unique values
0 missing
V15numeric36 unique values
0 missing
V16numeric102 unique values
0 missing
V17numeric11 unique values
0 missing
V18numeric404 unique values
0 missing
V19numeric324 unique values
0 missing

62 properties

505
Number of instances (rows) of the dataset.
38
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
37
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
2.63
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.37
Percentage of numeric attributes.
2.63
Percentage of nominal attributes.
First quartile of entropy among attributes.
9.77
First quartile of kurtosis among attributes of the numeric type.
2.22
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
2.57
First quartile of skewness among attributes of the numeric type.
2.63
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
23.97
Second quartile (Median) of kurtosis among attributes of the numeric type.
11.71
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
4.23
Second quartile (Median) of skewness among attributes of the numeric type.
14.31
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
35.19
Third quartile of kurtosis among attributes of the numeric type.
31.54
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.91
Third quartile of skewness among attributes of the numeric type.
40.23
Third quartile of standard deviation of attributes of the numeric type.
0.88
Average class difference between consecutive instances.
963.51
Mean of means among attributes of the numeric type.
0.45
Entropy of the target attribute values.
0.08
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
90.5
Percentage of instances belonging to the most frequent class.
457
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
157.58
Maximum kurtosis among attributes of the numeric type.
32349.89
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
11.32
Maximum skewness among attributes of the numeric type.
131007.17
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
30.78
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
4.05
Mean skewness among attributes of the numeric type.
3807.67
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.57
Minimum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.94
Minimum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
9.5
Percentage of instances belonging to the least frequent class.
48
Number of instances belonging to the least frequent class.

12 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: area_under_roc_curve - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task