DEVELOPMENT... OpenML
Data
ozone_level

ozone_level

in_preparation ARFF Publicly available Visibility: public Uploaded 04-05-2017 by Fisher
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Data type from v1 corrected, and target feature converted as categorical.

73 features

Class (target)nominal2 unique values
0 missing
RH85numeric100 unique values
105 missing
T11numeric330 unique values
192 missing
T85numeric251 unique values
99 missing
T_AVnumeric296 unique values
175 missing
T_PKnumeric330 unique values
175 missing
T23numeric284 unique values
189 missing
T22numeric287 unique values
192 missing
T21numeric294 unique values
185 missing
T20numeric302 unique values
189 missing
T19numeric306 unique values
188 missing
T18numeric321 unique values
184 missing
T17numeric329 unique values
182 missing
T16numeric337 unique values
184 missing
T15numeric339 unique values
187 missing
T14numeric335 unique values
192 missing
T13numeric335 unique values
191 missing
T12numeric334 unique values
189 missing
T10numeric327 unique values
188 missing
RH50numeric100 unique values
125 missing
Precpnumeric174 unique values
2 missing
SLP_numeric56 unique values
159 missing
SLPnumeric71 unique values
95 missing
TTnumeric657 unique values
125 missing
KInumeric1048 unique values
136 missing
HT50numeric85 unique values
112 missing
V50numeric1510 unique values
210 missing
U50numeric1687 unique values
210 missing
U85numeric1289 unique values
180 missing
T50numeric186 unique values
115 missing
HT70numeric441 unique values
100 missing
V70numeric1429 unique values
157 missing
U70numeric1537 unique values
157 missing
RH70numeric100 unique values
115 missing
T70numeric245 unique values
107 missing
HT85numeric368 unique values
95 missing
V85numeric1462 unique values
180 missing
WSR9numeric70 unique values
287 missing
WSR17numeric73 unique values
283 missing
WSR16numeric72 unique values
284 missing
WSR15numeric78 unique values
286 missing
WSR14numeric77 unique values
288 missing
WSR13numeric78 unique values
288 missing
WSR12numeric77 unique values
287 missing
WSR11numeric77 unique values
292 missing
WSR10numeric76 unique values
288 missing
WSR18numeric70 unique values
286 missing
WSR8numeric69 unique values
290 missing
WSR7numeric67 unique values
289 missing
WSR6numeric66 unique values
291 missing
WSR5numeric63 unique values
292 missing
WSR4numeric64 unique values
293 missing
WSR3numeric66 unique values
292 missing
WSR2numeric65 unique values
294 missing
WSR1numeric70 unique values
292 missing
T1numeric284 unique values
185 missing
T9numeric314 unique values
185 missing
T8numeric313 unique values
185 missing
T7numeric311 unique values
183 missing
T6numeric295 unique values
183 missing
T5numeric292 unique values
183 missing
T4numeric283 unique values
184 missing
T3numeric283 unique values
184 missing
T2numeric287 unique values
187 missing
WSR0numeric68 unique values
299 missing
T0numeric282 unique values
190 missing
WSR_AVnumeric55 unique values
273 missing
WSR_PKnumeric74 unique values
273 missing
WSR23numeric65 unique values
297 missing
WSR22numeric68 unique values
300 missing
WSR21numeric69 unique values
293 missing
WSR20numeric68 unique values
294 missing
WSR19numeric65 unique values
292 missing

62 properties

2536
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
14938
Number of missing values in the dataset.
688
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1.37
Percentage of binary attributes.
27.13
Percentage of instances having missing values.
8.07
Percentage of missing values.
98.63
Percentage of numeric attributes.
1.37
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.48
First quartile of kurtosis among attributes of the numeric type.
1.84
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.63
First quartile of skewness among attributes of the numeric type.
1.24
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.11
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.82
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.04
Second quartile (Median) of skewness among attributes of the numeric type.
6.43
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.64
Third quartile of kurtosis among attributes of the numeric type.
20.79
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.48
Third quartile of skewness among attributes of the numeric type.
7.34
Third quartile of standard deviation of attributes of the numeric type.
0.95
Average class difference between consecutive instances.
296.5
Mean of means among attributes of the numeric type.
0.19
Entropy of the target attribute values.
0.03
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
97.12
Percentage of instances belonging to the most frequent class.
2463
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
77.66
Maximum kurtosis among attributes of the numeric type.
10164.18
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
7.38
Maximum skewness among attributes of the numeric type.
79.2
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.2
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
0.08
Mean skewness among attributes of the numeric type.
7.81
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.07
Minimum kurtosis among attributes of the numeric type.
-10.51
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-1.28
Minimum skewness among attributes of the numeric type.
0.25
Minimum standard deviation of attributes of the numeric type.
2.88
Percentage of instances belonging to the least frequent class.
73
Number of instances belonging to the least frequent class.

12 tasks

30 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task