DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3819

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3819

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3819 (TID: 10808), and it has 153 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric113 unique values
0 missing
CATS2D_09_AAnumeric3 unique values
0 missing
SpMin3_Bh.m.numeric67 unique values
0 missing
ATS1enumeric105 unique values
0 missing
ATSC7snumeric130 unique values
0 missing
SpMin1_Bh.m.numeric45 unique values
0 missing
CATS2D_09_ANnumeric3 unique values
0 missing
SpMax3_Bh.i.numeric82 unique values
0 missing
CATS2D_07_DLnumeric10 unique values
0 missing
TRSnumeric12 unique values
0 missing
SpMax3_Bh.v.numeric89 unique values
0 missing
Rperimnumeric15 unique values
0 missing
MPC04numeric58 unique values
0 missing
CATS2D_01_DNnumeric5 unique values
0 missing
ATSC8inumeric122 unique values
0 missing
SpMin3_Bh.v.numeric80 unique values
0 missing
CATS2D_06_LLnumeric24 unique values
0 missing
P_VSA_i_3numeric92 unique values
0 missing
SpMax8_Bh.p.numeric75 unique values
0 missing
SpMax8_Bh.v.numeric88 unique values
0 missing
CATS2D_07_AAnumeric4 unique values
0 missing
ATS7snumeric123 unique values
0 missing
SAdonnumeric21 unique values
0 missing
ATSC6pnumeric127 unique values
0 missing
MPC06numeric61 unique values
0 missing
SpMax7_Bh.p.numeric81 unique values
0 missing
ATS5inumeric122 unique values
0 missing
SpMin5_Bh.e.numeric78 unique values
0 missing
P_VSA_p_4numeric8 unique values
0 missing
H.050numeric7 unique values
0 missing
nHDonnumeric7 unique values
0 missing
SM04_EA.dm.numeric44 unique values
0 missing
SM06_EA.dm.numeric45 unique values
0 missing
SM15_EA.dm.numeric22 unique values
0 missing
ATSC6inumeric118 unique values
0 missing
VvdwMGnumeric109 unique values
0 missing
Vxnumeric109 unique values
0 missing
MATS1pnumeric83 unique values
0 missing
P_VSA_LogP_3numeric46 unique values
0 missing
MDDDnumeric89 unique values
0 missing
CATS2D_08_DLnumeric10 unique values
0 missing
ATS5pnumeric119 unique values
0 missing
ATS1pnumeric106 unique values
0 missing
SM03_EA.dm.numeric17 unique values
0 missing
SM05_EA.dm.numeric20 unique values
0 missing
SM07_EA.dm.numeric21 unique values
0 missing
SM09_EA.dm.numeric22 unique values
0 missing
SM11_EA.dm.numeric21 unique values
0 missing
SM13_EA.dm.numeric22 unique values
0 missing
molecule_id (row identifier)nominal153 unique values
0 missing
DLS_consnumeric33 unique values
0 missing
Chi1_EA.ed.numeric88 unique values
0 missing
Eig04_AEA.bo.numeric79 unique values
0 missing
ATS8pnumeric116 unique values
0 missing
Spnumeric109 unique values
0 missing
CATS2D_07_DAnumeric5 unique values
0 missing
MPC07numeric64 unique values
0 missing
SdsssPnumeric67 unique values
0 missing
MAXDNnumeric119 unique values
0 missing
SpMax3_Bh.e.numeric84 unique values
0 missing
ATS6pnumeric118 unique values
0 missing
Svnumeric110 unique values
0 missing
ATS7pnumeric123 unique values
0 missing
Chi0_EA.ed.numeric87 unique values
0 missing
ATSC4mnumeric129 unique values
0 missing

62 properties

153
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.46
Percentage of numeric attributes.
1.54
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.85
First quartile of kurtosis among attributes of the numeric type.
2.17
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.69
First quartile of skewness among attributes of the numeric type.
0.34
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.16
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.11
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.22
Second quartile (Median) of skewness among attributes of the numeric type.
0.98
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.4
Third quartile of kurtosis among attributes of the numeric type.
9.65
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.21
Third quartile of skewness among attributes of the numeric type.
4.16
Third quartile of standard deviation of attributes of the numeric type.
0.17
Average class difference between consecutive instances.
33.82
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.42
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
7.85
Maximum kurtosis among attributes of the numeric type.
646.24
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.85
Maximum skewness among attributes of the numeric type.
168.16
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.24
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.12
Mean skewness among attributes of the numeric type.
10.39
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.76
Minimum kurtosis among attributes of the numeric type.
-2.74
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.24
Minimum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task