DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4070

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4070

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4070 (TID: 12780), and it has 121 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric58 unique values
0 missing
SpMax4_Bh.m.numeric100 unique values
0 missing
Eta_sh_pnumeric92 unique values
0 missing
SpMax3_Bh.m.numeric94 unique values
0 missing
SpMax2_Bh.m.numeric79 unique values
0 missing
SpMax2_Bh.i.numeric97 unique values
0 missing
SpMax2_Bh.e.numeric92 unique values
0 missing
SpMAD_EA.ri.numeric89 unique values
0 missing
SM11_AEA.bo.numeric93 unique values
0 missing
Rperimnumeric23 unique values
0 missing
P_VSA_MR_8numeric12 unique values
0 missing
P_VSA_m_5numeric5 unique values
0 missing
P_VSA_m_2numeric120 unique values
0 missing
P_VSA_LogP_3numeric53 unique values
0 missing
nHMnumeric6 unique values
0 missing
JGI4numeric36 unique values
0 missing
HNarnumeric84 unique values
0 missing
Eta_FLnumeric111 unique values
0 missing
SpMax5_Bh.m.numeric108 unique values
0 missing
X.numeric44 unique values
0 missing
X0Anumeric52 unique values
0 missing
X0Avnumeric73 unique values
0 missing
X1Avnumeric70 unique values
0 missing
X3Avnumeric59 unique values
0 missing
Xindexnumeric88 unique values
0 missing
ZM1Madnumeric119 unique values
0 missing
GGI10numeric80 unique values
0 missing
JGI10numeric13 unique values
0 missing
ATSC1vnumeric116 unique values
0 missing
Eig07_AEA.ri.numeric107 unique values
0 missing
Eig08_AEA.ri.numeric101 unique values
0 missing
Eig08_EAnumeric96 unique values
0 missing
Eig08_EA.bo.numeric98 unique values
0 missing
Eig08_EA.ed.numeric99 unique values
0 missing
Eig07_EA.ri.numeric104 unique values
0 missing
AMWnumeric112 unique values
0 missing
MSDnumeric109 unique values
0 missing
IDEnumeric106 unique values
0 missing
NRSnumeric5 unique values
0 missing
SpMax2_Bh.v.numeric100 unique values
0 missing
Eta_C_Anumeric111 unique values
0 missing
Eig13_AEA.ri.numeric101 unique values
0 missing
Eig13_AEA.bo.numeric95 unique values
0 missing
ATS3mnumeric115 unique values
0 missing
Eig07_EA.bo.numeric102 unique values
0 missing
Eig07_AEA.bo.numeric100 unique values
0 missing
HVcpxnumeric102 unique values
0 missing
SpMin1_Bh.m.numeric81 unique values
0 missing
MATS3pnumeric106 unique values
0 missing
GATS3vnumeric102 unique values
0 missing
GATS3pnumeric100 unique values
0 missing
Eig03_AEA.ri.numeric109 unique values
0 missing
Eta_F_Anumeric102 unique values
0 missing
Eta_Fnumeric120 unique values
0 missing
Eta_betaPnumeric35 unique values
0 missing
Eta_betanumeric83 unique values
0 missing
Eta_alpha_Anumeric55 unique values
0 missing
Eig08_AEA.bo.numeric94 unique values
0 missing
Eig03_EA.ri.numeric108 unique values
0 missing
Eig03_EAnumeric93 unique values
0 missing
molecule_id (row identifier)nominal121 unique values
0 missing
Eig02_EA.ri.numeric105 unique values
0 missing
D.Dtr06numeric110 unique values
0 missing
BLInumeric96 unique values
0 missing
ATSC5mnumeric121 unique values
0 missing
ATSC4mnumeric121 unique values
0 missing
ATSC3mnumeric121 unique values
0 missing
ATS4mnumeric114 unique values
0 missing

62 properties

121
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.19
First quartile of kurtosis among attributes of the numeric type.
1.05
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.7
First quartile of skewness among attributes of the numeric type.
0.14
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.93
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.74
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.1
Second quartile (Median) of skewness among attributes of the numeric type.
0.57
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.79
Third quartile of kurtosis among attributes of the numeric type.
5.56
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.8
Third quartile of skewness among attributes of the numeric type.
2.28
Third quartile of standard deviation of attributes of the numeric type.
0.35
Average class difference between consecutive instances.
17.01
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.56
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
18.12
Maximum kurtosis among attributes of the numeric type.
236.14
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.99
Maximum skewness among attributes of the numeric type.
171.7
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.4
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.52
Mean skewness among attributes of the numeric type.
11.26
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.01
Minimum kurtosis among attributes of the numeric type.
-0.01
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.62
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task