DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4375

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4375

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4375 (TID: 100789), and it has 676 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric44 unique values
0 missing
SpMax6_Bh.m.numeric440 unique values
0 missing
Eig09_AEA.dm.numeric473 unique values
0 missing
SM12_AEA.ri.numeric399 unique values
0 missing
Eig02_EA.bo.numeric399 unique values
0 missing
ZM2Vnumeric307 unique values
0 missing
MWC09numeric477 unique values
0 missing
Eig07_AEA.bo.numeric450 unique values
0 missing
X5numeric599 unique values
0 missing
X4numeric594 unique values
0 missing
MPC03numeric76 unique values
0 missing
SM05_AEA.bo.numeric433 unique values
0 missing
SM14_AEA.dm.numeric572 unique values
0 missing
Eig05_EA.ed.numeric572 unique values
0 missing
Eig05_AEA.dm.numeric497 unique values
0 missing
ATS3mnumeric473 unique values
0 missing
MWC08numeric469 unique values
0 missing
SM02_AEA.ed.numeric171 unique values
0 missing
ZM2MulPernumeric658 unique values
0 missing
SM08_AEA.bo.numeric469 unique values
0 missing
SM02_EA.ed.numeric306 unique values
0 missing
MPC05numeric127 unique values
0 missing
MWC07numeric475 unique values
0 missing
Eig04_EA.ri.numeric473 unique values
0 missing
SM03_AEA.ed.numeric405 unique values
0 missing
Eig15_AEA.bo.numeric460 unique values
0 missing
SM03_EA.bo.numeric117 unique values
0 missing
Eig08_AEA.ed.numeric483 unique values
0 missing
TPCnumeric513 unique values
0 missing
Chi0_EA.dm.numeric583 unique values
0 missing
Eig05_AEA.bo.numeric463 unique values
0 missing
SM15_AEA.ri.numeric477 unique values
0 missing
Eig05_EA.bo.numeric477 unique values
0 missing
TWCnumeric477 unique values
0 missing
ZM2numeric173 unique values
0 missing
MWC03numeric173 unique values
0 missing
MWC04numeric322 unique values
0 missing
SM02_AEA.ri.numeric547 unique values
0 missing
Eig07_EA.ed.numeric547 unique values
0 missing
SM07_AEA.bo.numeric467 unique values
0 missing
ZM2Kupnumeric650 unique values
0 missing
SM13_AEA.bo.numeric458 unique values
0 missing
Eig05_EAnumeric458 unique values
0 missing
Eig06_EA.bo.numeric484 unique values
0 missing
Eig07_EA.ri.numeric473 unique values
0 missing
SM06_AEA.bo.numeric455 unique values
0 missing
Eig07_AEA.ri.numeric491 unique values
0 missing
Eig06_EA.ri.numeric508 unique values
0 missing
Eig06_AEA.ri.numeric498 unique values
0 missing
SM14_AEA.bo.numeric445 unique values
0 missing
Eig06_EAnumeric445 unique values
0 missing
SM15_AEA.dm.numeric567 unique values
0 missing
Eig06_EA.ed.numeric567 unique values
0 missing
Eig06_AEA.bo.numeric452 unique values
0 missing
ZM2Pernumeric656 unique values
0 missing
SM04_AEA.bo.numeric435 unique values
0 missing
SpAD_EA.ed.numeric621 unique values
0 missing
Eig07_AEA.ed.numeric496 unique values
0 missing
Eig05_AEA.ri.numeric481 unique values
0 missing
Polnumeric62 unique values
0 missing
MWC06numeric462 unique values
0 missing
Eig09_AEA.ed.numeric460 unique values
0 missing
X4solnumeric595 unique values
0 missing
molecule_id (row identifier)nominal676 unique values
0 missing
Eig06_AEA.ed.numeric494 unique values
0 missing
MPC04numeric99 unique values
0 missing
Eig07_AEA.dm.numeric489 unique values
0 missing
MWC05numeric445 unique values
0 missing
CATS2D_06_DLnumeric13 unique values
0 missing
SM15_AEA.bo.numeric439 unique values
0 missing
Eig07_EAnumeric439 unique values
0 missing

62 properties

676
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.16
First quartile of kurtosis among attributes of the numeric type.
2.77
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.57
First quartile of skewness among attributes of the numeric type.
0.29
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.52
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.63
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.27
Second quartile (Median) of skewness among attributes of the numeric type.
0.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.15
Third quartile of kurtosis among attributes of the numeric type.
8.6
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.01
Third quartile of skewness among attributes of the numeric type.
1.25
Third quartile of standard deviation of attributes of the numeric type.
0.66
Average class difference between consecutive instances.
38.15
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.11
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
11.11
Maximum kurtosis among attributes of the numeric type.
666.62
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.05
Maximum skewness among attributes of the numeric type.
154.19
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.89
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.17
Mean skewness among attributes of the numeric type.
8.36
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.29
Minimum kurtosis among attributes of the numeric type.
1.02
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.14
Minimum skewness among attributes of the numeric type.
0.24
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task