DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3772

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3772

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3772 (TID: 11279), and it has 522 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric305 unique values
0 missing
O.057numeric4 unique values
0 missing
MPC05numeric106 unique values
0 missing
SpMin4_Bh.i.numeric270 unique values
0 missing
D.Dtr06numeric281 unique values
0 missing
ON0Vnumeric290 unique values
0 missing
Eig07_AEA.ed.numeric269 unique values
0 missing
SM04_EA.bo.numeric260 unique values
0 missing
CATS2D_03_DPnumeric3 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
CATS2D_02_PNnumeric2 unique values
0 missing
Eig06_AEA.bo.numeric250 unique values
0 missing
nCICnumeric7 unique values
0 missing
Vindexnumeric131 unique values
0 missing
Yindexnumeric214 unique values
0 missing
PDInumeric194 unique values
0 missing
MPC06numeric126 unique values
0 missing
MPC04numeric84 unique values
0 missing
SpMax4_Bh.i.numeric300 unique values
0 missing
SpMin4_Bh.v.numeric237 unique values
0 missing
SpMax5_Bh.m.numeric315 unique values
0 missing
SsssCHnumeric184 unique values
0 missing
ATSC5pnumeric481 unique values
0 missing
IDDEnumeric175 unique values
0 missing
IDEnumeric244 unique values
0 missing
Eig13_AEA.dm.numeric338 unique values
0 missing
AECCnumeric224 unique values
0 missing
SpMin4_Bh.e.numeric260 unique values
0 missing
ATSC1snumeric454 unique values
0 missing
SpMin7_Bh.s.numeric210 unique values
0 missing
JGI10numeric14 unique values
0 missing
HVcpxnumeric240 unique values
0 missing
X4vnumeric458 unique values
0 missing
SpMaxA_EA.ed.numeric170 unique values
0 missing
X5vnumeric440 unique values
0 missing
X3solnumeric324 unique values
0 missing
ZM1Madnumeric438 unique values
0 missing
SsOHnumeric82 unique values
0 missing
SpMin6_Bh.s.numeric216 unique values
0 missing
ZM2Madnumeric461 unique values
0 missing
Wapnumeric276 unique values
0 missing
TPCnumeric240 unique values
0 missing
MPC09numeric177 unique values
0 missing
GATS1snumeric242 unique values
0 missing
MPC08numeric170 unique values
0 missing
Eig14_AEA.bo.numeric242 unique values
0 missing
ATS3mnumeric341 unique values
0 missing
DECCnumeric225 unique values
0 missing
SpMax7_Bh.p.numeric223 unique values
0 missing
ICRnumeric171 unique values
0 missing
X5solnumeric322 unique values
0 missing
ATS2mnumeric333 unique values
0 missing
X4solnumeric319 unique values
0 missing
MPC07numeric151 unique values
0 missing
nRCOOHnumeric4 unique values
0 missing
CATS2D_02_DNnumeric3 unique values
0 missing
CATS2D_01_DNnumeric4 unique values
0 missing
CATS2D_01_ANnumeric4 unique values
0 missing
TRSnumeric29 unique values
0 missing
CATS2D_02_NLnumeric6 unique values
0 missing
NsOHnumeric4 unique values
0 missing
MPC10numeric179 unique values
0 missing
molecule_id (row identifier)nominal522 unique values
0 missing
Eig09_EA.bo.numeric225 unique values
0 missing
SpMin8_Bh.p.numeric232 unique values
0 missing
SpMax8_Bh.m.numeric240 unique values
0 missing
Xindexnumeric159 unique values
0 missing
SpMax8_Bh.e.numeric230 unique values
0 missing
X5numeric297 unique values
0 missing
Eig06_EA.bo.numeric271 unique values
0 missing

62 properties

522
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.57
Percentage of numeric attributes.
1.43
Percentage of nominal attributes.
First quartile of entropy among attributes.
1.05
First quartile of kurtosis among attributes of the numeric type.
0.43
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-1.55
First quartile of skewness among attributes of the numeric type.
0.3
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
2.51
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.99
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-1.07
Second quartile (Median) of skewness among attributes of the numeric type.
0.62
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
4.81
Third quartile of kurtosis among attributes of the numeric type.
4.62
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.18
Third quartile of skewness among attributes of the numeric type.
1.26
Third quartile of standard deviation of attributes of the numeric type.
0
Average class difference between consecutive instances.
288.17
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.13
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
11.38
Maximum kurtosis among attributes of the numeric type.
19162.37
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.08
Maximum skewness among attributes of the numeric type.
13112.25
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
3.17
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.32
Mean skewness among attributes of the numeric type.
193.39
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.72
Minimum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.65
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task