DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4130

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4130

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4130 (TID: 12789), and it has 309 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric194 unique values
0 missing
MATS8mnumeric187 unique values
0 missing
NaaNnumeric6 unique values
0 missing
SM08_EAnumeric198 unique values
0 missing
P_VSA_MR_8numeric14 unique values
0 missing
CATS2D_09_AAnumeric9 unique values
0 missing
piPC10numeric203 unique values
0 missing
SpMin1_Bh.p.numeric65 unique values
0 missing
SpMin1_Bh.v.numeric60 unique values
0 missing
MATS2inumeric171 unique values
0 missing
SM07_EAnumeric189 unique values
0 missing
ATS1mnumeric200 unique values
0 missing
SM08_AEA.ed.numeric193 unique values
0 missing
GATS2inumeric196 unique values
0 missing
SpMax2_Bh.m.numeric129 unique values
0 missing
nSnumeric5 unique values
0 missing
MAXDNnumeric225 unique values
0 missing
N.075numeric6 unique values
0 missing
SM04_EA.ed.numeric205 unique values
0 missing
MATS6snumeric166 unique values
0 missing
AACnumeric169 unique values
0 missing
IC0numeric169 unique values
0 missing
SpMin1_Bh.m.numeric48 unique values
0 missing
Eig02_AEA.ed.numeric76 unique values
0 missing
CATS2D_03_DAnumeric10 unique values
0 missing
MATS8enumeric186 unique values
0 missing
SM03_EA.ed.numeric150 unique values
0 missing
SAdonnumeric44 unique values
0 missing
C.029numeric3 unique values
0 missing
Eta_sh_ynumeric138 unique values
0 missing
MATS1snumeric98 unique values
0 missing
N.070numeric3 unique values
0 missing
nSO2Nnumeric2 unique values
0 missing
P_VSA_s_1numeric4 unique values
0 missing
Eig01_EAnumeric82 unique values
0 missing
SpMax5_Bh.m.numeric155 unique values
0 missing
CATS2D_02_AAnumeric9 unique values
0 missing
SpMax_AEA.ri.numeric93 unique values
0 missing
Eig01_AEA.ri.numeric93 unique values
0 missing
SpMax4_Bh.m.numeric144 unique values
0 missing
SpMax_EAnumeric82 unique values
0 missing
SpDiam_EAnumeric82 unique values
0 missing
SM09_AEA.bo.numeric82 unique values
0 missing
nHMnumeric5 unique values
0 missing
SM10_AEA.bo.numeric99 unique values
0 missing
Eig02_EAnumeric99 unique values
0 missing
SM15_EA.ed.numeric173 unique values
0 missing
SM11_EA.ed.numeric173 unique values
0 missing
SM14_EA.ed.numeric176 unique values
0 missing
SM13_EA.ed.numeric177 unique values
0 missing
SM12_EA.ed.numeric179 unique values
0 missing
molecule_id (row identifier)nominal309 unique values
0 missing
C.032numeric3 unique values
0 missing
nPyrimidinesnumeric3 unique values
0 missing
SM10_AEA.ed.numeric175 unique values
0 missing
SM11_AEA.ed.numeric188 unique values
0 missing
C.027numeric5 unique values
0 missing
CATS2D_09_DLnumeric36 unique values
0 missing
SaaNnumeric101 unique values
0 missing
ZM1Madnumeric257 unique values
0 missing
P_VSA_MR_7numeric18 unique values
0 missing
P_VSA_i_1numeric12 unique values
0 missing
SpMax1_Bh.p.numeric54 unique values
0 missing
Eig01_AEA.dm.numeric92 unique values
0 missing
SpMax_AEA.dm.numeric92 unique values
0 missing
H.049numeric6 unique values
0 missing
SM06_EA.bo.numeric198 unique values
0 missing

62 properties

309
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.62
First quartile of kurtosis among attributes of the numeric type.
1
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.3
First quartile of skewness among attributes of the numeric type.
0.13
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.13
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.69
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.04
Second quartile (Median) of skewness among attributes of the numeric type.
0.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.05
Third quartile of kurtosis among attributes of the numeric type.
9.51
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.4
Third quartile of skewness among attributes of the numeric type.
1.09
Third quartile of standard deviation of attributes of the numeric type.
-0.35
Average class difference between consecutive instances.
13.83
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.22
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
198.84
Maximum kurtosis among attributes of the numeric type.
320.29
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
12.69
Maximum skewness among attributes of the numeric type.
155.7
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
5.12
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
1.11
Mean skewness among attributes of the numeric type.
6.94
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.11
Minimum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.16
Minimum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task