DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4237

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4237

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4237 (TID: 10850), and it has 622 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric104 unique values
0 missing
X0numeric292 unique values
0 missing
ATSC7mnumeric603 unique values
0 missing
CATS2D_02_ALnumeric18 unique values
0 missing
P_VSA_v_3numeric573 unique values
0 missing
P_VSA_p_3numeric573 unique values
0 missing
ON1Vnumeric532 unique values
0 missing
SAtotnumeric584 unique values
0 missing
TIC5numeric482 unique values
0 missing
ATS3enumeric454 unique values
0 missing
S1Knumeric502 unique values
0 missing
Sinumeric548 unique values
0 missing
Xunumeric556 unique values
0 missing
SMTInumeric554 unique values
0 missing
IDMTnumeric559 unique values
0 missing
IDETnumeric558 unique values
0 missing
nATnumeric67 unique values
0 missing
ISIZnumeric67 unique values
0 missing
P_VSA_v_1numeric43 unique values
0 missing
GMTInumeric557 unique values
0 missing
Eta_epsinumeric487 unique values
0 missing
SpMin5_Bh.v.numeric387 unique values
0 missing
ATS3inumeric463 unique values
0 missing
nHDonnumeric11 unique values
0 missing
H.050numeric11 unique values
0 missing
SpMaxA_EA.bo.numeric152 unique values
0 missing
ATS4inumeric487 unique values
0 missing
MATS3snumeric305 unique values
0 missing
TIC4numeric484 unique values
0 missing
Eig12_AEA.dm.numeric433 unique values
0 missing
VvdwZAZnumeric562 unique values
0 missing
SaasNnumeric160 unique values
0 missing
ATS4enumeric493 unique values
0 missing
ATS2inumeric449 unique values
0 missing
PHInumeric528 unique values
0 missing
ATS1enumeric430 unique values
0 missing
NsNH2numeric7 unique values
0 missing
Chi1_EA.dm.numeric532 unique values
0 missing
Eta_betaS_Anumeric122 unique values
0 missing
Chi0_EA.dm.numeric522 unique values
0 missing
CATS2D_04_APnumeric5 unique values
0 missing
P_VSA_i_3numeric375 unique values
0 missing
D.Dtr10numeric109 unique values
0 missing
ATSC3mnumeric596 unique values
0 missing
Hynumeric347 unique values
0 missing
ATS5inumeric487 unique values
0 missing
CATS2D_00_PPnumeric7 unique values
0 missing
CATS2D_00_DPnumeric7 unique values
0 missing
CATS2D_00_DDnumeric7 unique values
0 missing
N.numeric126 unique values
0 missing
P_VSA_e_2numeric573 unique values
0 missing
CATS2D_03_APnumeric4 unique values
0 missing
SsNH2numeric230 unique values
0 missing
CATS2D_06_PLnumeric7 unique values
0 missing
SpMin8_Bh.m.numeric362 unique values
0 missing
P_VSA_s_2numeric66 unique values
0 missing
P_VSA_m_1numeric43 unique values
0 missing
P_VSA_e_1numeric43 unique values
0 missing
S2Knumeric537 unique values
0 missing
SpMin8_Bh.v.numeric356 unique values
0 missing
Senumeric543 unique values
0 missing
SpMin7_Bh.p.numeric376 unique values
0 missing
P_VSA_p_1numeric106 unique values
0 missing
molecule_id (row identifier)nominal622 unique values
0 missing
ON0Vnumeric478 unique values
0 missing
CATS2D_01_AAnumeric5 unique values
0 missing
ATS2enumeric465 unique values
0 missing
P_VSA_LogP_7numeric101 unique values
0 missing
CENTnumeric500 unique values
0 missing
SpMin7_Bh.m.numeric368 unique values
0 missing
ATSC2mnumeric575 unique values
0 missing

62 properties

622
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.53
First quartile of kurtosis among attributes of the numeric type.
1.23
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.74
First quartile of skewness among attributes of the numeric type.
0.72
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
45.7
Second quartile (Median) of kurtosis among attributes of the numeric type.
8.34
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
4.69
Second quartile (Median) of skewness among attributes of the numeric type.
4.11
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
88.3
Third quartile of kurtosis among attributes of the numeric type.
148.2
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
7.35
Third quartile of skewness among attributes of the numeric type.
103.21
Third quartile of standard deviation of attributes of the numeric type.
0.35
Average class difference between consecutive instances.
961.78
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.11
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
389.33
Maximum kurtosis among attributes of the numeric type.
31523.82
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
19.03
Maximum skewness among attributes of the numeric type.
186362.44
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
68.58
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
5.1
Mean skewness among attributes of the numeric type.
4594.37
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.06
Minimum kurtosis among attributes of the numeric type.
-0.02
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.87
Minimum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task