DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2186

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2186

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2186 (TID: 10989), and it has 90 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric80 unique values
0 missing
SM07_EAnumeric63 unique values
0 missing
ATS2vnumeric82 unique values
0 missing
SM07_AEA.bo.numeric78 unique values
0 missing
SM06_EA.ed.numeric78 unique values
0 missing
SM06_EAnumeric77 unique values
0 missing
SM05_EA.ri.numeric75 unique values
0 missing
SM05_EA.ed.numeric66 unique values
0 missing
SM03_EA.ed.numeric59 unique values
0 missing
ZM2Vnumeric78 unique values
0 missing
ZM2Pernumeric86 unique values
0 missing
ZM2MulPernumeric86 unique values
0 missing
SpDiam_AEA.bo.numeric77 unique values
0 missing
X2solnumeric81 unique values
0 missing
X2numeric78 unique values
0 missing
Eig07_AEA.ed.numeric61 unique values
0 missing
ATS3mnumeric88 unique values
0 missing
ATS2pnumeric81 unique values
0 missing
SM07_EA.ed.numeric67 unique values
0 missing
SM08_AEA.bo.numeric74 unique values
0 missing
SM08_EAnumeric77 unique values
0 missing
SM08_EA.ed.numeric77 unique values
0 missing
SM09_AEA.ed.numeric76 unique values
0 missing
SM09_EAnumeric67 unique values
0 missing
SM10_AEA.ed.numeric76 unique values
0 missing
SM10_EAnumeric78 unique values
0 missing
SM11_EAnumeric70 unique values
0 missing
SM12_EAnumeric78 unique values
0 missing
SM13_EAnumeric70 unique values
0 missing
SM14_EAnumeric77 unique values
0 missing
SM15_EAnumeric70 unique values
0 missing
SpDiam_EAnumeric73 unique values
0 missing
ATS2mnumeric84 unique values
0 missing
Eig01_AEA.bo.numeric68 unique values
0 missing
MWC02numeric46 unique values
0 missing
ZM1numeric46 unique values
0 missing
SRW04numeric55 unique values
0 missing
SpAD_EA.ri.numeric89 unique values
0 missing
SpAD_EAnumeric80 unique values
0 missing
SpAD_AEA.ri.numeric90 unique values
0 missing
SpAD_AEA.dm.numeric90 unique values
0 missing
SM04_EAnumeric71 unique values
0 missing
SM02_EA.ri.numeric83 unique values
0 missing
X5vnumeric87 unique values
0 missing
CATS2D_02_APnumeric5 unique values
0 missing
SM06_EA.bo.numeric76 unique values
0 missing
SM04_EA.ri.numeric86 unique values
0 missing
Psi_e_1numeric90 unique values
0 missing
X4vnumeric89 unique values
0 missing
SpMax1_Bh.e.numeric77 unique values
0 missing
SM04_EA.bo.numeric75 unique values
0 missing
S.110numeric3 unique values
0 missing
Eig08_AEA.ed.numeric58 unique values
0 missing
SpDiam_AEA.ed.numeric78 unique values
0 missing
SpDiam_AEA.ri.numeric80 unique values
0 missing
SM06_AEA.bo.numeric75 unique values
0 missing
SM05_AEA.bo.numeric75 unique values
0 missing
SM04_AEA.bo.numeric75 unique values
0 missing
MATS1mnumeric72 unique values
0 missing
SddssSnumeric35 unique values
0 missing
molecule_id (row identifier)nominal90 unique values
0 missing
NddssSnumeric3 unique values
0 missing
N.069numeric3 unique values
0 missing
X4Anumeric49 unique values
0 missing
SM04_EA.ed.numeric78 unique values
0 missing
Eig09_AEA.ed.numeric54 unique values
0 missing
Eig08_EA.ri.numeric63 unique values
0 missing
SpMax2_Bh.v.numeric81 unique values
0 missing

62 properties

90
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
1.29
First quartile of kurtosis among attributes of the numeric type.
3.31
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-2.57
First quartile of skewness among attributes of the numeric type.
0.77
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
4.29
Second quartile (Median) of kurtosis among attributes of the numeric type.
6.41
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-2.1
Second quartile (Median) of skewness among attributes of the numeric type.
1.35
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
10.12
Third quartile of kurtosis among attributes of the numeric type.
13.23
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.22
Third quartile of skewness among attributes of the numeric type.
3.15
Third quartile of standard deviation of attributes of the numeric type.
-0.36
Average class difference between consecutive instances.
22.09
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.76
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
22.54
Maximum kurtosis among attributes of the numeric type.
390.19
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.03
Maximum skewness among attributes of the numeric type.
195.41
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
5.83
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-1.4
Mean skewness among attributes of the numeric type.
9.43
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.76
Minimum kurtosis among attributes of the numeric type.
-1.91
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-4.03
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task