DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3785

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3785

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3785 (TID: 100579), and it has 564 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric357 unique values
0 missing
IC2numeric348 unique values
0 missing
TPSA.Tot.numeric119 unique values
0 missing
IC3numeric322 unique values
0 missing
Eig03_AEA.dm.numeric343 unique values
0 missing
P_VSA_m_3numeric70 unique values
0 missing
SM13_AEA.bo.numeric283 unique values
0 missing
Eig05_EAnumeric283 unique values
0 missing
Eig05_AEA.ri.numeric403 unique values
0 missing
SpMax7_Bh.s.numeric389 unique values
0 missing
P_VSA_p_2numeric109 unique values
0 missing
nOnumeric7 unique values
0 missing
nHAccnumeric12 unique values
0 missing
SAaccnumeric145 unique values
0 missing
IC4numeric277 unique values
0 missing
Eig05_AEA.dm.numeric373 unique values
0 missing
Eig06_AEA.ed.numeric280 unique values
0 missing
DELSnumeric535 unique values
0 missing
C.002numeric10 unique values
0 missing
P_VSA_v_2numeric150 unique values
0 missing
SM10_EA.dm.numeric78 unique values
0 missing
SM14_EA.dm.numeric68 unique values
0 missing
NssNHnumeric3 unique values
0 missing
SM11_EA.ed.numeric300 unique values
0 missing
SM10_EA.ed.numeric312 unique values
0 missing
SM07_EA.ed.numeric296 unique values
0 missing
SsOHnumeric294 unique values
0 missing
Eig05_EA.ri.numeric385 unique values
0 missing
ATSC7snumeric530 unique values
0 missing
CATS2D_02_DAnumeric5 unique values
0 missing
N.072numeric4 unique values
0 missing
Eig05_AEA.bo.numeric292 unique values
0 missing
GGI4numeric236 unique values
0 missing
Eig07_EA.ri.numeric374 unique values
0 missing
SssNHnumeric260 unique values
0 missing
CATS2D_04_DLnumeric9 unique values
0 missing
CATS2D_06_AAnumeric7 unique values
0 missing
GGI10numeric96 unique values
0 missing
P_VSA_LogP_2numeric74 unique values
0 missing
SM06_EA.dm.numeric91 unique values
0 missing
P_VSA_s_3numeric333 unique values
0 missing
ATS6snumeric466 unique values
0 missing
SM08_EA.dm.numeric84 unique values
0 missing
SpMax3_Bh.s.numeric162 unique values
0 missing
C.040numeric5 unique values
0 missing
nR.Ctnumeric4 unique values
0 missing
NdssCnumeric8 unique values
0 missing
C.017numeric4 unique values
0 missing
TPSA.NO.numeric105 unique values
0 missing
Eig06_AEA.dm.numeric404 unique values
0 missing
SdOnumeric453 unique values
0 missing
ATSC6snumeric531 unique values
0 missing
Eig06_EA.ed.numeric320 unique values
0 missing
SM04_EA.dm.numeric91 unique values
0 missing
SM15_EA.dm.numeric43 unique values
0 missing
SM13_EA.dm.numeric44 unique values
0 missing
SM11_EA.dm.numeric44 unique values
0 missing
SM09_EA.dm.numeric46 unique values
0 missing
SM07_EA.dm.numeric46 unique values
0 missing
SM05_EA.dm.numeric38 unique values
0 missing
SM15_AEA.dm.numeric320 unique values
0 missing
molecule_id (row identifier)nominal564 unique values
0 missing
SM03_EA.dm.numeric29 unique values
0 missing
ATSC6enumeric408 unique values
0 missing
CATS2D_06_DAnumeric6 unique values
0 missing
ATSC4enumeric389 unique values
0 missing
ATS4snumeric452 unique values
0 missing
SpMax_EA.dm.numeric51 unique values
0 missing
Eig01_EA.dm.numeric51 unique values
0 missing

62 properties

564
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.4
First quartile of kurtosis among attributes of the numeric type.
1.64
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.61
First quartile of skewness among attributes of the numeric type.
0.67
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.65
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.47
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.14
Second quartile (Median) of skewness among attributes of the numeric type.
1.21
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.46
Third quartile of kurtosis among attributes of the numeric type.
6.92
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.8
Third quartile of skewness among attributes of the numeric type.
3.56
Third quartile of standard deviation of attributes of the numeric type.
0.23
Average class difference between consecutive instances.
16.13
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.12
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
8.49
Maximum kurtosis among attributes of the numeric type.
130.29
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.26
Maximum skewness among attributes of the numeric type.
53.81
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.91
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.02
Mean skewness among attributes of the numeric type.
6.55
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.25
Minimum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.83
Minimum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task