DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2047

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2047

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2047 (TID: 11180), and it has 514 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric355 unique values
0 missing
SM09_EAnumeric318 unique values
0 missing
SM11_EA.ri.numeric409 unique values
0 missing
SM09_AEA.ed.numeric313 unique values
0 missing
SM08_EAnumeric329 unique values
0 missing
SM08_AEA.ed.numeric312 unique values
0 missing
SM07_EAnumeric291 unique values
0 missing
SM07_AEA.ed.numeric302 unique values
0 missing
SM04_EA.ed.numeric328 unique values
0 missing
SM03_EA.ed.numeric227 unique values
0 missing
P_VSA_i_2numeric373 unique values
0 missing
H.047numeric28 unique values
0 missing
SM08_EA.ed.numeric330 unique values
0 missing
SM07_EA.ed.numeric329 unique values
0 missing
SM06_EA.ed.numeric328 unique values
0 missing
SM13_EA.ri.numeric397 unique values
0 missing
SM12_EA.ri.numeric407 unique values
0 missing
SM10_EA.ri.numeric400 unique values
0 missing
SM10_AEA.ed.numeric318 unique values
0 missing
SM10_EAnumeric328 unique values
0 missing
SM11_AEA.ed.numeric324 unique values
0 missing
SM11_EAnumeric335 unique values
0 missing
SM12_AEA.ed.numeric318 unique values
0 missing
SM12_EAnumeric334 unique values
0 missing
SM13_AEA.ed.numeric323 unique values
0 missing
SM13_EAnumeric333 unique values
0 missing
SM14_AEA.ed.numeric322 unique values
0 missing
SM14_EAnumeric339 unique values
0 missing
piPC06numeric346 unique values
0 missing
Eta_F_Anumeric300 unique values
0 missing
GATS4pnumeric276 unique values
0 missing
IC1numeric338 unique values
0 missing
X5vnumeric453 unique values
0 missing
ZM2Kupnumeric412 unique values
0 missing
Eta_sh_xnumeric64 unique values
0 missing
X5Anumeric31 unique values
0 missing
SpMAD_EA.ri.numeric138 unique values
0 missing
X1Anumeric50 unique values
0 missing
SpMAD_AEA.ri.numeric138 unique values
0 missing
Eig12_AEA.bo.numeric252 unique values
0 missing
SpMAD_AEA.ed.numeric166 unique values
0 missing
IVDEnumeric192 unique values
0 missing
PW2numeric70 unique values
0 missing
Eig02_AEA.ed.numeric181 unique values
0 missing
nNnumeric7 unique values
0 missing
JGTnumeric208 unique values
0 missing
Eig14_AEA.dm.numeric229 unique values
0 missing
Eig09_AEA.bo.numeric233 unique values
0 missing
JGI2numeric69 unique values
0 missing
SpMAD_EA.ed.numeric324 unique values
0 missing
JGI6numeric24 unique values
0 missing
GATS4inumeric274 unique values
0 missing
SM09_EA.ri.numeric384 unique values
0 missing
P_VSA_MR_6numeric257 unique values
0 missing
RFDnumeric25 unique values
0 missing
RCInumeric25 unique values
0 missing
Eig13_EA.bo.numeric266 unique values
0 missing
piPC08numeric350 unique values
0 missing
piPC10numeric355 unique values
0 missing
X3Anumeric53 unique values
0 missing
molecule_id (row identifier)nominal514 unique values
0 missing
piPC09numeric342 unique values
0 missing
P_VSA_m_2numeric375 unique values
0 missing
SM11_AEA.dm.numeric232 unique values
0 missing
SM10_AEA.bo.numeric216 unique values
0 missing
Eig02_EA.ed.numeric232 unique values
0 missing
Eig02_EAnumeric216 unique values
0 missing
Eig02_AEA.ri.numeric259 unique values
0 missing

62 properties

514
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.06
First quartile of kurtosis among attributes of the numeric type.
1.51
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.12
First quartile of skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.13
Second quartile (Median) of kurtosis among attributes of the numeric type.
7.55
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.57
Second quartile (Median) of skewness among attributes of the numeric type.
0.56
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.39
Third quartile of kurtosis among attributes of the numeric type.
15.76
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.83
Third quartile of skewness among attributes of the numeric type.
0.86
Third quartile of standard deviation of attributes of the numeric type.
0.29
Average class difference between consecutive instances.
22.53
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.13
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
5.37
Maximum kurtosis among attributes of the numeric type.
518.54
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.14
Maximum skewness among attributes of the numeric type.
125.94
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.35
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.3
Mean skewness among attributes of the numeric type.
4.74
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.53
Minimum kurtosis among attributes of the numeric type.
0.02
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.58
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task