DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2611

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2611

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2611 (TID: 11402), and it has 413 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric136 unique values
0 missing
NsOHnumeric5 unique values
0 missing
CATS2D_09_AAnumeric10 unique values
0 missing
SsssNnumeric124 unique values
0 missing
NsssNnumeric3 unique values
0 missing
O.056numeric3 unique values
0 missing
MAXDNnumeric270 unique values
0 missing
nOHsnumeric3 unique values
0 missing
nRCONR2numeric3 unique values
0 missing
P_VSA_s_3numeric269 unique values
0 missing
nROHnumeric5 unique values
0 missing
CATS2D_03_DDnumeric17 unique values
0 missing
CATS2D_03_ALnumeric17 unique values
0 missing
Uinumeric26 unique values
0 missing
CATS2D_04_ALnumeric27 unique values
0 missing
CATS2D_06_AAnumeric10 unique values
0 missing
NsNH2numeric17 unique values
0 missing
GATS2inumeric172 unique values
0 missing
CATS2D_09_ALnumeric28 unique values
0 missing
CATS2D_06_DLnumeric27 unique values
0 missing
nPyrrolidinesnumeric3 unique values
0 missing
CATS2D_09_APnumeric15 unique values
0 missing
MATS6mnumeric120 unique values
0 missing
SpDiam_AEA.ed.numeric100 unique values
0 missing
ARRnumeric72 unique values
0 missing
Eta_alpha_Anumeric36 unique values
0 missing
CATS2D_07_DAnumeric15 unique values
0 missing
GATS3mnumeric136 unique values
0 missing
CATS2D_06_ALnumeric21 unique values
0 missing
SpDiam_EA.ed.numeric106 unique values
0 missing
Eig01_EA.ri.numeric85 unique values
0 missing
SpMax_EA.ri.numeric85 unique values
0 missing
CATS2D_02_APnumeric13 unique values
0 missing
SM05_EA.dm.numeric115 unique values
0 missing
ATSC1enumeric216 unique values
0 missing
CATS2D_06_DAnumeric24 unique values
0 missing
MLOGPnumeric269 unique values
0 missing
MLOGP2numeric269 unique values
0 missing
P_VSA_e_5numeric51 unique values
0 missing
P_VSA_m_3numeric51 unique values
0 missing
SM03_EA.dm.numeric94 unique values
0 missing
ALOGPnumeric339 unique values
0 missing
ALOGP2numeric338 unique values
0 missing
CATS2D_09_DAnumeric33 unique values
0 missing
Eta_F_Anumeric269 unique values
0 missing
SM02_EA.dm.numeric142 unique values
0 missing
CATS2D_03_DAnumeric19 unique values
0 missing
Eig14_EA.dm.numeric33 unique values
0 missing
Eig15_EA.dm.numeric31 unique values
0 missing
molecule_id (row identifier)nominal413 unique values
0 missing
nOnumeric22 unique values
0 missing
CATS2D_08_DAnumeric34 unique values
0 missing
CATS2D_08_AAnumeric18 unique values
0 missing
CATS2D_09_DDnumeric19 unique values
0 missing
CATS2D_02_DAnumeric28 unique values
0 missing
CATS2D_07_DPnumeric15 unique values
0 missing
SM07_EA.dm.numeric123 unique values
0 missing
SM04_EA.dm.numeric136 unique values
0 missing
Eig02_AEA.dm.numeric105 unique values
0 missing
CATS2D_08_APnumeric16 unique values
0 missing
CATS2D_00_DDnumeric17 unique values
0 missing
CATS2D_00_DPnumeric17 unique values
0 missing
CATS2D_00_PPnumeric17 unique values
0 missing
N.066numeric16 unique values
0 missing
nRNH2numeric16 unique values
0 missing

62 properties

413
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.46
Percentage of numeric attributes.
1.54
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.03
First quartile of kurtosis among attributes of the numeric type.
1.33
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.78
First quartile of skewness among attributes of the numeric type.
0.56
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.79
Second quartile (Median) of kurtosis among attributes of the numeric type.
6.56
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.59
Second quartile (Median) of skewness among attributes of the numeric type.
2.5
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.19
Third quartile of kurtosis among attributes of the numeric type.
10.27
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
-0.21
Third quartile of skewness among attributes of the numeric type.
4.33
Third quartile of standard deviation of attributes of the numeric type.
0.52
Average class difference between consecutive instances.
17.65
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.16
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
20.83
Maximum kurtosis among attributes of the numeric type.
293.35
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.99
Maximum skewness among attributes of the numeric type.
150.79
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.31
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.51
Mean skewness among attributes of the numeric type.
8.7
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.41
Minimum kurtosis among attributes of the numeric type.
-5.49
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.8
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task