DEVELOPMENT... OpenML
Data
oil_spill

oil_spill

active ARFF Publicly available Visibility: public Uploaded 25-08-2014 by Hailey
3 likes downloaded by 20 people , 30 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_15 study_20 study_52 study_7 study_236 study_293
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: Oil dataset Past Usage: 1. Kubat, M., Holte, R.,

50 features

class (target)nominal2 unique values
0 missing
attr37numeric3 unique values
0 missing
attr26numeric8 unique values
0 missing
attr27numeric9 unique values
0 missing
attr28numeric308 unique values
0 missing
attr29numeric447 unique values
0 missing
attr30numeric392 unique values
0 missing
attr31numeric107 unique values
0 missing
attr32numeric42 unique values
0 missing
attr33numeric4 unique values
0 missing
attr34numeric45 unique values
0 missing
attr35numeric141 unique values
0 missing
attr36numeric110 unique values
0 missing
attr25numeric9 unique values
0 missing
attr38numeric758 unique values
0 missing
attr39numeric9 unique values
0 missing
attr40numeric9 unique values
0 missing
attr41numeric388 unique values
0 missing
attr42numeric220 unique values
0 missing
attr43numeric644 unique values
0 missing
attr44numeric649 unique values
0 missing
attr45numeric499 unique values
0 missing
attr46numeric2 unique values
0 missing
attr47numeric937 unique values
0 missing
attr48numeric169 unique values
0 missing
attr49numeric286 unique values
0 missing
attr12numeric59 unique values
0 missing
attr1numeric238 unique values
0 missing
attr2numeric297 unique values
0 missing
attr3numeric927 unique values
0 missing
attr4numeric933 unique values
0 missing
attr5numeric179 unique values
0 missing
attr6numeric375 unique values
0 missing
attr7numeric820 unique values
0 missing
attr8numeric618 unique values
0 missing
attr9numeric561 unique values
0 missing
attr10numeric57 unique values
0 missing
attr11numeric577 unique values
0 missing
attr24numeric92 unique values
0 missing
attr13numeric73 unique values
0 missing
attr14numeric107 unique values
0 missing
attr15numeric53 unique values
0 missing
attr16numeric91 unique values
0 missing
attr17numeric893 unique values
0 missing
attr18numeric810 unique values
0 missing
attr19numeric170 unique values
0 missing
attr20numeric53 unique values
0 missing
attr21numeric68 unique values
0 missing
attr22numeric9 unique values
0 missing
attr23numeric1 unique values
0 missing

107 properties

937
Number of instances (rows) of the dataset.
50
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
49
Number of numeric attributes.
1
Number of nominal attributes.
0.93
Average class difference between consecutive instances.
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.26
Entropy of the target attribute values.
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.05
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.05
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.23
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.23
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.23
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
95.62
Percentage of instances belonging to the most frequent class.
896
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
535.5
Maximum kurtosis among attributes of the numeric type.
769696.38
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
21.51
Maximum skewness among attributes of the numeric type.
3831151.03
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
51.71
Mean kurtosis among attributes of the numeric type.
16103.51
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
3.85
Mean skewness among attributes of the numeric type.
78741.02
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.44
Minimum kurtosis among attributes of the numeric type.
-2.83
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-2.02
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
4.38
Percentage of instances belonging to the least frequent class.
41
Number of instances belonging to the least frequent class.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.32
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98
Percentage of numeric attributes.
2
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.08
First quartile of kurtosis among attributes of the numeric type.
0.31
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
0.57
First quartile of skewness among attributes of the numeric type.
0.26
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
2.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
9.13
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.47
Second quartile (Median) of skewness among attributes of the numeric type.
5.03
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
52.54
Third quartile of kurtosis among attributes of the numeric type.
108
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.79
Third quartile of skewness among attributes of the numeric type.
228.51
Third quartile of standard deviation of attributes of the numeric type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.05
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.05
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.05
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.04
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

25 tasks

173 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
31 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task