DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2179

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2179

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2179 (TID: 10733), and it has 344 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric175 unique values
0 missing
SM11_EA.bo.numeric268 unique values
0 missing
nCrsnumeric13 unique values
0 missing
SM09_EA.bo.numeric263 unique values
0 missing
Eta_beta_Anumeric227 unique values
0 missing
SM08_EA.bo.numeric285 unique values
0 missing
GATS2inumeric266 unique values
0 missing
MATS2snumeric229 unique values
0 missing
GATS2pnumeric252 unique values
0 missing
SM12_EA.bo.numeric276 unique values
0 missing
SM10_EA.bo.numeric278 unique values
0 missing
SpDiam_EA.bo.numeric218 unique values
0 missing
H.numeric153 unique values
0 missing
piPC05numeric262 unique values
0 missing
GATS2vnumeric239 unique values
0 missing
SpMax1_Bh.v.numeric213 unique values
0 missing
MATS2mnumeric198 unique values
0 missing
Mvnumeric151 unique values
0 missing
X5Avnumeric53 unique values
0 missing
CATS2D_09_DLnumeric12 unique values
0 missing
ATSC3snumeric328 unique values
0 missing
piPC07numeric275 unique values
0 missing
SM14_EA.bo.numeric273 unique values
0 missing
SM13_AEA.ri.numeric244 unique values
0 missing
Eig03_EA.bo.numeric244 unique values
0 missing
P_VSA_e_2numeric295 unique values
0 missing
Eta_betaP_Anumeric154 unique values
0 missing
GATS2mnumeric257 unique values
0 missing
piPC06numeric277 unique values
0 missing
PCDnumeric248 unique values
0 missing
SM07_EA.bo.numeric262 unique values
0 missing
SsssCHnumeric181 unique values
0 missing
P_VSA_v_3numeric295 unique values
0 missing
P_VSA_p_3numeric295 unique values
0 missing
Minumeric65 unique values
0 missing
CATS2D_04_DDnumeric8 unique values
0 missing
nOHsnumeric6 unique values
0 missing
P_VSA_p_2numeric211 unique values
0 missing
nROHnumeric7 unique values
0 missing
nRNHRnumeric3 unique values
0 missing
NsOHnumeric7 unique values
0 missing
GATS1snumeric245 unique values
0 missing
GATS1enumeric239 unique values
0 missing
P_VSA_LogP_3numeric101 unique values
0 missing
C.008numeric8 unique values
0 missing
nHDonnumeric9 unique values
0 missing
H.050numeric9 unique values
0 missing
Hynumeric226 unique values
0 missing
P_VSA_MR_3numeric15 unique values
0 missing
O.056numeric7 unique values
0 missing
CATS2D_03_DDnumeric7 unique values
0 missing
SAdonnumeric44 unique values
0 missing
MATS1enumeric202 unique values
0 missing
SpMAD_EA.bo.numeric242 unique values
0 missing
C.numeric137 unique values
0 missing
Eta_L_Anumeric172 unique values
0 missing
SsOHnumeric174 unique values
0 missing
GATS2snumeric251 unique values
0 missing
N.067numeric3 unique values
0 missing
Mpnumeric139 unique values
0 missing
MATS1snumeric193 unique values
0 missing
molecule_id (row identifier)nominal344 unique values
0 missing
P_VSA_m_3numeric92 unique values
0 missing
PDInumeric198 unique values
0 missing
P_VSA_e_5numeric83 unique values
0 missing
GATS1mnumeric230 unique values
0 missing
NsssCHnumeric9 unique values
0 missing
SAaccnumeric209 unique values
0 missing
P_VSA_v_2numeric213 unique values
0 missing

62 properties

344
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.97
First quartile of kurtosis among attributes of the numeric type.
0.91
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.38
First quartile of skewness among attributes of the numeric type.
0.22
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.77
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.01
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.25
Second quartile (Median) of skewness among attributes of the numeric type.
1.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0.17
Third quartile of kurtosis among attributes of the numeric type.
15.78
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.66
Third quartile of skewness among attributes of the numeric type.
2.52
Third quartile of standard deviation of attributes of the numeric type.
0.28
Average class difference between consecutive instances.
22.46
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.2
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
2.15
Maximum kurtosis among attributes of the numeric type.
144.33
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.45
Maximum skewness among attributes of the numeric type.
81.51
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.49
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.19
Mean skewness among attributes of the numeric type.
12.05
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.54
Minimum kurtosis among attributes of the numeric type.
-1.79
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.32
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task