DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2069

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2069

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2069 (TID: 246), and it has 1135 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric582 unique values
0 missing
molecule_id (row identifier)nominal1135 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b621numeric2 unique values
0 missing
FCFP4_1024b325numeric2 unique values
0 missing
FCFP4_1024b653numeric2 unique values
0 missing
FCFP4_1024b594numeric2 unique values
0 missing
FCFP4_1024b675numeric2 unique values
0 missing
FCFP4_1024b961numeric2 unique values
0 missing
FCFP4_1024b380numeric2 unique values
0 missing
FCFP4_1024b677numeric2 unique values
0 missing
FCFP4_1024b45numeric2 unique values
0 missing
FCFP4_1024b353numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b323numeric2 unique values
0 missing
FCFP4_1024b173numeric2 unique values
0 missing
FCFP4_1024b463numeric2 unique values
0 missing
FCFP4_1024b872numeric2 unique values
0 missing
FCFP4_1024b896numeric2 unique values
0 missing
FCFP4_1024b514numeric2 unique values
0 missing
FCFP4_1024b286numeric2 unique values
0 missing
FCFP4_1024b572numeric2 unique values
0 missing
FCFP4_1024b528numeric2 unique values
0 missing
FCFP4_1024b731numeric2 unique values
0 missing
FCFP4_1024b345numeric2 unique values
0 missing
FCFP4_1024b419numeric2 unique values
0 missing
FCFP4_1024b1017numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b385numeric2 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b433numeric2 unique values
0 missing
FCFP4_1024b769numeric2 unique values
0 missing
FCFP4_1024b38numeric2 unique values
0 missing
FCFP4_1024b209numeric2 unique values
0 missing
FCFP4_1024b396numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b46numeric2 unique values
0 missing
FCFP4_1024b692numeric2 unique values
0 missing
FCFP4_1024b252numeric2 unique values
0 missing
FCFP4_1024b766numeric2 unique values
0 missing
FCFP4_1024b614numeric2 unique values
0 missing
FCFP4_1024b926numeric2 unique values
0 missing
FCFP4_1024b44numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b33numeric2 unique values
0 missing
FCFP4_1024b603numeric2 unique values
0 missing
FCFP4_1024b764numeric2 unique values
0 missing
FCFP4_1024b483numeric2 unique values
0 missing
FCFP4_1024b357numeric2 unique values
0 missing
FCFP4_1024b716numeric2 unique values
0 missing
FCFP4_1024b737numeric2 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b634numeric2 unique values
0 missing
FCFP4_1024b964numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b891numeric2 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b456numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b974numeric2 unique values
0 missing
FCFP4_1024b875numeric2 unique values
0 missing
FCFP4_1024b589numeric2 unique values
0 missing
FCFP4_1024b685numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b720numeric2 unique values
0 missing
FCFP4_1024b492numeric2 unique values
0 missing
FCFP4_1024b368numeric2 unique values
0 missing
FCFP4_1024b20numeric2 unique values
0 missing
FCFP4_1024b557numeric2 unique values
0 missing
FCFP4_1024b179numeric2 unique values
0 missing
FCFP4_1024b838numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b815numeric2 unique values
0 missing
FCFP4_1024b710numeric2 unique values
0 missing
FCFP4_1024b743numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b203numeric2 unique values
0 missing
FCFP4_1024b892numeric2 unique values
0 missing
FCFP4_1024b972numeric2 unique values
0 missing
FCFP4_1024b578numeric2 unique values
0 missing
FCFP4_1024b715numeric2 unique values
0 missing
FCFP4_1024b902numeric2 unique values
0 missing
FCFP4_1024b566numeric2 unique values
0 missing
FCFP4_1024b182numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b88numeric2 unique values
0 missing
FCFP4_1024b747numeric2 unique values
0 missing
FCFP4_1024b894numeric2 unique values
0 missing
FCFP4_1024b361numeric2 unique values
0 missing
FCFP4_1024b1014numeric2 unique values
0 missing
FCFP4_1024b296numeric2 unique values
0 missing
FCFP4_1024b678numeric2 unique values
0 missing
FCFP4_1024b973numeric2 unique values
0 missing
FCFP4_1024b320numeric2 unique values
0 missing
FCFP4_1024b923numeric2 unique values
0 missing
FCFP4_1024b15numeric2 unique values
0 missing
FCFP4_1024b58numeric2 unique values
0 missing
FCFP4_1024b1numeric1 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing

62 properties

1135
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
99.04
Percentage of numeric attributes.
0.96
Percentage of nominal attributes.
First quartile of entropy among attributes.
3.39
First quartile of kurtosis among attributes of the numeric type.
0.03
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.2
First quartile of skewness among attributes of the numeric type.
0.18
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
9.77
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.07
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
3.43
Second quartile (Median) of skewness among attributes of the numeric type.
0.25
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
24.25
Third quartile of kurtosis among attributes of the numeric type.
0.14
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.12
Third quartile of skewness among attributes of the numeric type.
0.32
Third quartile of standard deviation of attributes of the numeric type.
-0.12
Average class difference between consecutive instances.
0.19
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.09
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
1135
Maximum kurtosis among attributes of the numeric type.
6.39
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
33.69
Maximum skewness among attributes of the numeric type.
1.28
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
33.12
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
4.28
Mean skewness among attributes of the numeric type.
0.26
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.34
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task