DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1946

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1946

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1946 (TID: 11085), and it has 712 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric518 unique values
0 missing
Chi0_AEA.ed.numeric362 unique values
0 missing
Eig09_EA.ri.numeric460 unique values
0 missing
Chi0_AEA.dm.numeric362 unique values
0 missing
Chi0_AEA.bo.numeric362 unique values
0 missing
SpMin2_Bh.p.numeric212 unique values
0 missing
SpMaxA_AEA.ri.numeric149 unique values
0 missing
IC0numeric241 unique values
0 missing
AACnumeric241 unique values
0 missing
Chi0_EA.ed.numeric505 unique values
0 missing
X3numeric497 unique values
0 missing
SM02_AEA.dm.numeric385 unique values
0 missing
Eig08_EAnumeric385 unique values
0 missing
NNRSnumeric10 unique values
0 missing
ATSC5vnumeric660 unique values
0 missing
X1MulPernumeric596 unique values
0 missing
Eig12_EA.bo.numeric461 unique values
0 missing
RDCHInumeric468 unique values
0 missing
Chi0_AEA.ri.numeric362 unique values
0 missing
Chi0_EAnumeric362 unique values
0 missing
Eig09_AEA.ri.numeric466 unique values
0 missing
X1Madnumeric588 unique values
0 missing
Eig08_EA.bo.numeric394 unique values
0 missing
Chi1_EA.ed.numeric487 unique values
0 missing
SpMin3_Bh.i.numeric292 unique values
0 missing
ATS7enumeric521 unique values
0 missing
Eig11_AEA.ri.numeric496 unique values
0 missing
X1Pernumeric604 unique values
0 missing
Eig11_EA.bo.numeric455 unique values
0 missing
ATSC5inumeric537 unique values
0 missing
SpMax4_Bh.m.numeric374 unique values
0 missing
ATS5pnumeric524 unique values
0 missing
X1numeric349 unique values
0 missing
Eig12_EA.ri.numeric502 unique values
0 missing
SIC0numeric123 unique values
0 missing
Eig12_EA.ed.numeric430 unique values
0 missing
GATS3vnumeric251 unique values
0 missing
SpMax_AEA.dm.numeric177 unique values
0 missing
SpDiam_AEA.dm.numeric177 unique values
0 missing
Eig01_AEA.dm.numeric177 unique values
0 missing
Psi_i_Anumeric294 unique values
0 missing
Psi_e_Anumeric294 unique values
0 missing
Depressant.80numeric2 unique values
0 missing
SM07_AEA.ri.numeric430 unique values
0 missing
RCInumeric37 unique values
0 missing
GGI8numeric220 unique values
0 missing
SdOnumeric573 unique values
0 missing
nR12numeric3 unique values
0 missing
D.Dtr12numeric57 unique values
0 missing
SpMin2_Bh.m.numeric232 unique values
0 missing
SaasCnumeric619 unique values
0 missing
SM09_AEA.dm.numeric368 unique values
0 missing
CENTnumeric442 unique values
0 missing
RFDnumeric35 unique values
0 missing
BLTA96numeric252 unique values
0 missing
Eig12_AEA.ri.numeric492 unique values
0 missing
CATS2D_04_LLnumeric29 unique values
0 missing
Eig10_EA.bo.numeric431 unique values
0 missing
GMTInumeric519 unique values
0 missing
SM10_AEA.ri.numeric430 unique values
0 missing
molecule_id (row identifier)nominal712 unique values
0 missing
Eig15_EA.ri.numeric464 unique values
0 missing
Eig15_EA.ed.numeric430 unique values
0 missing
Eig15_EAnumeric368 unique values
0 missing
MLOGP2numeric406 unique values
0 missing
MLOGPnumeric396 unique values
0 missing
BLTF96numeric238 unique values
0 missing
BLTD48numeric255 unique values
0 missing

62 properties

712
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.01
First quartile of kurtosis among attributes of the numeric type.
0.23
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.12
First quartile of skewness among attributes of the numeric type.
0.27
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.62
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.72
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.73
Second quartile (Median) of skewness among attributes of the numeric type.
0.73
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.39
Third quartile of kurtosis among attributes of the numeric type.
7.97
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.26
Third quartile of skewness among attributes of the numeric type.
2.19
Third quartile of standard deviation of attributes of the numeric type.
-0.22
Average class difference between consecutive instances.
129.88
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.1
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
16.91
Maximum kurtosis among attributes of the numeric type.
7450.01
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.62
Maximum skewness among attributes of the numeric type.
7783.31
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.28
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.8
Mean skewness among attributes of the numeric type.
130.88
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.32
Minimum kurtosis among attributes of the numeric type.
-4.09
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.9
Minimum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task