DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3358

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3358

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3358 (TID: 12453), and it has 837 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric440 unique values
0 missing
SpDiam_AEA.ed.numeric401 unique values
0 missing
IVDEnumeric210 unique values
0 missing
SM07_AEA.ed.numeric513 unique values
0 missing
SM06_AEA.bo.numeric494 unique values
0 missing
SM09_AEA.ed.numeric526 unique values
0 missing
SM08_AEA.ed.numeric525 unique values
0 missing
NdOnumeric6 unique values
0 missing
SM12_EAnumeric543 unique values
0 missing
SM11_EAnumeric506 unique values
0 missing
SM11_AEA.ed.numeric518 unique values
0 missing
SM10_EAnumeric532 unique values
0 missing
SM08_EAnumeric512 unique values
0 missing
nR10numeric3 unique values
0 missing
O.058numeric6 unique values
0 missing
SM12_AEA.ed.numeric519 unique values
0 missing
SM03_EA.ed.numeric266 unique values
0 missing
SM09_EAnumeric489 unique values
0 missing
ATSC1snumeric726 unique values
0 missing
JGI3numeric71 unique values
0 missing
SpMax3_Bh.s.numeric404 unique values
0 missing
JGTnumeric282 unique values
0 missing
ATSC5snumeric814 unique values
0 missing
JGI4numeric57 unique values
0 missing
SM06_EAnumeric486 unique values
0 missing
Eta_B_Anumeric38 unique values
0 missing
nS..O.2numeric2 unique values
0 missing
SpMin1_Bh.p.numeric173 unique values
0 missing
JGI2numeric77 unique values
0 missing
Eig03_AEA.dm.numeric515 unique values
0 missing
SpMin1_Bh.e.numeric196 unique values
0 missing
ATSC2snumeric785 unique values
0 missing
SM05_EAnumeric101 unique values
0 missing
SpMin1_Bh.v.numeric170 unique values
0 missing
SM04_EA.dm.numeric235 unique values
0 missing
SM12_EA.bo.numeric540 unique values
0 missing
NddssSnumeric3 unique values
0 missing
SpDiam_AEA.bo.numeric391 unique values
0 missing
SpMax_AEA.dm.numeric326 unique values
0 missing
SpDiam_AEA.dm.numeric332 unique values
0 missing
Eig01_AEA.dm.numeric326 unique values
0 missing
SpMax1_Bh.m.numeric296 unique values
0 missing
SM11_EA.bo.numeric534 unique values
0 missing
SddssSnumeric144 unique values
0 missing
P_VSA_s_1numeric5 unique values
0 missing
SpMax_EA.bo.numeric295 unique values
0 missing
SpDiam_EA.bo.numeric298 unique values
0 missing
SM11_AEA.ri.numeric295 unique values
0 missing
Eig01_EA.bo.numeric295 unique values
0 missing
SM13_EA.bo.numeric529 unique values
0 missing
SM15_EA.bo.numeric531 unique values
0 missing
SM14_EA.bo.numeric541 unique values
0 missing
MATS1mnumeric184 unique values
0 missing
SM13_AEA.ed.numeric509 unique values
0 missing
SpMAD_AEA.dm.numeric288 unique values
0 missing
SM07_EAnumeric367 unique values
0 missing
SM14_AEA.ed.numeric525 unique values
0 missing
SM06_EA.bo.numeric535 unique values
0 missing
SdOnumeric492 unique values
0 missing
SM08_AEA.bo.numeric531 unique values
0 missing
SM08_EA.bo.numeric548 unique values
0 missing
molecule_id (row identifier)nominal837 unique values
0 missing
SM03_EA.bo.numeric97 unique values
0 missing
SM07_EA.bo.numeric501 unique values
0 missing
Eta_sh_xnumeric50 unique values
0 missing
SM05_EA.bo.numeric404 unique values
0 missing
SM09_EA.bo.numeric506 unique values
0 missing
SM10_EA.bo.numeric550 unique values
0 missing
S.110numeric3 unique values
0 missing

62 properties

837
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.07
First quartile of kurtosis among attributes of the numeric type.
1.66
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.68
First quartile of skewness among attributes of the numeric type.
0.4
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.46
Second quartile (Median) of kurtosis among attributes of the numeric type.
6.28
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.11
Second quartile (Median) of skewness among attributes of the numeric type.
0.69
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.32
Third quartile of kurtosis among attributes of the numeric type.
13.11
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.79
Third quartile of skewness among attributes of the numeric type.
1.09
Third quartile of standard deviation of attributes of the numeric type.
-0.07
Average class difference between consecutive instances.
8.9
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.08
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
41.64
Maximum kurtosis among attributes of the numeric type.
53.14
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.53
Maximum skewness among attributes of the numeric type.
41.09
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.07
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.23
Mean skewness among attributes of the numeric type.
1.99
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.27
Minimum kurtosis among attributes of the numeric type.
-0.69
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.73
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task