DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3949

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3949

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3949 (TID: 17081), and it has 440 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric264 unique values
0 missing
nR07numeric2 unique values
0 missing
nRCOOHnumeric4 unique values
0 missing
D.Dtr07numeric20 unique values
0 missing
ATSC6pnumeric416 unique values
0 missing
CIC1numeric297 unique values
0 missing
Eig03_EA.dm.numeric33 unique values
0 missing
ATS6enumeric333 unique values
0 missing
ATS6inumeric350 unique values
0 missing
MATS3snumeric143 unique values
0 missing
ATS8vnumeric353 unique values
0 missing
SpAD_AEA.ri.numeric405 unique values
0 missing
ATSC3snumeric422 unique values
0 missing
ATS2pnumeric288 unique values
0 missing
nCconjnumeric5 unique values
0 missing
ATS2vnumeric268 unique values
0 missing
SpMin7_Bh.p.numeric199 unique values
0 missing
Psi_i_1numeric382 unique values
0 missing
SpAD_EAnumeric309 unique values
0 missing
ATSC5pnumeric411 unique values
0 missing
SpAD_AEA.bo.numeric332 unique values
0 missing
SpAD_AEA.dm.numeric383 unique values
0 missing
Eta_alphanumeric178 unique values
0 missing
ATS3mnumeric289 unique values
0 missing
SaaaCnumeric164 unique values
0 missing
ATS6mnumeric314 unique values
0 missing
CATS2D_05_DAnumeric10 unique values
0 missing
IC4numeric283 unique values
0 missing
Chi1_AEA.bo.numeric287 unique values
0 missing
Chi1_AEA.dm.numeric287 unique values
0 missing
Chi1_AEA.ed.numeric287 unique values
0 missing
Chi1_AEA.ri.numeric287 unique values
0 missing
Chi1_EAnumeric287 unique values
0 missing
P_VSA_LogP_2numeric153 unique values
0 missing
GGI10numeric227 unique values
0 missing
ATSC2inumeric305 unique values
0 missing
SpMin8_Bh.e.numeric217 unique values
0 missing
CATS2D_03_DDnumeric6 unique values
0 missing
ATSC3inumeric352 unique values
0 missing
SpMin8_Bh.i.numeric234 unique values
0 missing
X3vnumeric410 unique values
0 missing
ATSC1inumeric260 unique values
0 missing
ATS5pnumeric311 unique values
0 missing
ATS6pnumeric326 unique values
0 missing
SpMax2_Bh.s.numeric31 unique values
0 missing
nArCOOHnumeric2 unique values
0 missing
ATS4vnumeric295 unique values
0 missing
ATSC4pnumeric407 unique values
0 missing
CATS2D_02_ANnumeric2 unique values
0 missing
C.043numeric2 unique values
0 missing
ARRnumeric85 unique values
0 missing
molecule_id (row identifier)nominal440 unique values
0 missing
ATS6vnumeric316 unique values
0 missing
VvdwMGnumeric278 unique values
0 missing
Vxnumeric278 unique values
0 missing
ATS5vnumeric307 unique values
0 missing
SpMin7_Bh.e.numeric214 unique values
0 missing
ATS4mnumeric288 unique values
0 missing
ATSC5mnumeric419 unique values
0 missing
ATS3pnumeric295 unique values
0 missing
IC3numeric317 unique values
0 missing
ATS5mnumeric315 unique values
0 missing
ATS3vnumeric296 unique values
0 missing
TIEnumeric422 unique values
0 missing
ATSC6mnumeric419 unique values
0 missing
X4vnumeric400 unique values
0 missing
ATSC7pnumeric411 unique values
0 missing

62 properties

440
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.91
First quartile of kurtosis among attributes of the numeric type.
1.5
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.07
First quartile of skewness among attributes of the numeric type.
0.28
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
7.22
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.5
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
2.04
Second quartile (Median) of skewness among attributes of the numeric type.
0.53
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
15.34
Third quartile of kurtosis among attributes of the numeric type.
20.54
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.51
Third quartile of skewness among attributes of the numeric type.
6.02
Third quartile of standard deviation of attributes of the numeric type.
-0.06
Average class difference between consecutive instances.
29.08
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.15
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
32.39
Maximum kurtosis among attributes of the numeric type.
669.36
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.61
Maximum skewness among attributes of the numeric type.
220.6
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
10.33
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
2.3
Mean skewness among attributes of the numeric type.
12.8
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.42
Minimum kurtosis among attributes of the numeric type.
-0.04
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.06
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task