DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5393

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5393

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5393 (TID: 100974), and it has 267 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric219 unique values
0 missing
SM09_AEA.dm.numeric177 unique values
0 missing
DLS_consnumeric35 unique values
0 missing
Eig15_EAnumeric177 unique values
0 missing
P_VSA_s_4numeric149 unique values
0 missing
SM08_EA.bo.numeric220 unique values
0 missing
SM13_EA.ed.numeric231 unique values
0 missing
SM14_AEA.ri.numeric191 unique values
0 missing
Eig04_EA.bo.numeric191 unique values
0 missing
SM09_EA.ed.numeric225 unique values
0 missing
nHDonnumeric8 unique values
0 missing
H.050numeric8 unique values
0 missing
P_VSA_m_2numeric198 unique values
0 missing
SM12_EA.ed.numeric231 unique values
0 missing
SM11_EA.ed.numeric226 unique values
0 missing
SM10_EA.ed.numeric230 unique values
0 missing
SssOnumeric206 unique values
0 missing
DECCnumeric215 unique values
0 missing
Eig11_AEA.dm.numeric183 unique values
0 missing
Eig15_EA.ed.numeric191 unique values
0 missing
SM10_AEA.ri.numeric191 unique values
0 missing
Eig15_AEA.bo.numeric170 unique values
0 missing
SM14_EA.ed.numeric229 unique values
0 missing
MATS1pnumeric142 unique values
0 missing
Eig15_AEA.ri.numeric190 unique values
0 missing
Eig11_EA.ed.numeric186 unique values
0 missing
SM06_AEA.ri.numeric186 unique values
0 missing
Eig11_AEA.ri.numeric191 unique values
0 missing
Eig11_EA.ri.numeric185 unique values
0 missing
SpMaxA_AEA.ed.numeric143 unique values
0 missing
CSInumeric210 unique values
0 missing
Xunumeric236 unique values
0 missing
SpMaxA_EA.ed.numeric164 unique values
0 missing
P_VSA_i_2numeric193 unique values
0 missing
PCRnumeric171 unique values
0 missing
SM04_EA.bo.numeric190 unique values
0 missing
Ucnumeric23 unique values
0 missing
nBMnumeric23 unique values
0 missing
nABnumeric14 unique values
0 missing
SM08_AEA.bo.numeric213 unique values
0 missing
P_VSA_LogP_5numeric147 unique values
0 missing
nCarnumeric22 unique values
0 missing
Hynumeric157 unique values
0 missing
piPC10numeric223 unique values
0 missing
SM13_AEA.ri.numeric173 unique values
0 missing
Eig03_EA.bo.numeric173 unique values
0 missing
SM06_EA.bo.numeric212 unique values
0 missing
GATS7mnumeric211 unique values
0 missing
PCDnumeric229 unique values
0 missing
piPC04numeric216 unique values
0 missing
Eta_F_Anumeric192 unique values
0 missing
O.060numeric7 unique values
0 missing
piPC03numeric177 unique values
0 missing
GGI10numeric106 unique values
0 missing
SdssCnumeric204 unique values
0 missing
GATS3vnumeric172 unique values
0 missing
MATS7snumeric209 unique values
0 missing
SM07_AEA.bo.numeric215 unique values
0 missing
ZM2Pernumeric258 unique values
0 missing
SM05_EA.bo.numeric184 unique values
0 missing
molecule_id (row identifier)nominal267 unique values
0 missing
C.005numeric8 unique values
0 missing
X5Avnumeric25 unique values
0 missing
MATS7enumeric192 unique values
0 missing
CATS2D_02_ALnumeric16 unique values
0 missing
SM03_EA.bo.numeric76 unique values
0 missing
GGI8numeric147 unique values
0 missing
nArCOORnumeric2 unique values
0 missing

62 properties

267
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.53
First quartile of kurtosis among attributes of the numeric type.
0.79
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.1
First quartile of skewness among attributes of the numeric type.
0.31
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.15
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.11
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.16
Second quartile (Median) of skewness among attributes of the numeric type.
0.8
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.31
Third quartile of kurtosis among attributes of the numeric type.
13.07
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.96
Third quartile of skewness among attributes of the numeric type.
1.62
Third quartile of standard deviation of attributes of the numeric type.
0.27
Average class difference between consecutive instances.
38.29
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.25
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
34.65
Maximum kurtosis among attributes of the numeric type.
955.75
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.25
Maximum skewness among attributes of the numeric type.
726.96
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.48
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.44
Mean skewness among attributes of the numeric type.
18.2
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.15
Minimum kurtosis among attributes of the numeric type.
-0.33
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.62
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task