DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293260

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293260

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1293260 (TID: 103693), and it has 179 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric15 unique values
0 missing
ATS7pnumeric165 unique values
0 missing
ATS5enumeric170 unique values
0 missing
ATS7mnumeric167 unique values
0 missing
ATS7inumeric164 unique values
0 missing
ATS7enumeric164 unique values
0 missing
ATS6vnumeric166 unique values
0 missing
ATS6snumeric171 unique values
0 missing
ATS6pnumeric161 unique values
0 missing
ATS6mnumeric168 unique values
0 missing
ATS6inumeric170 unique values
0 missing
ATS6enumeric170 unique values
0 missing
ATS5vnumeric164 unique values
0 missing
ATS5snumeric170 unique values
0 missing
ATS5pnumeric168 unique values
0 missing
ATS5mnumeric171 unique values
0 missing
ATS5inumeric169 unique values
0 missing
ATS4vnumeric168 unique values
0 missing
ATSC1enumeric120 unique values
0 missing
ATSC2mnumeric170 unique values
0 missing
ATSC2inumeric161 unique values
0 missing
ATSC2enumeric146 unique values
0 missing
ATSC1vnumeric171 unique values
0 missing
ATSC1snumeric177 unique values
0 missing
ATSC1pnumeric164 unique values
0 missing
ATSC1mnumeric165 unique values
0 missing
ATSC1inumeric151 unique values
0 missing
ATS7snumeric172 unique values
0 missing
ATS8vnumeric169 unique values
0 missing
ATS8snumeric169 unique values
0 missing
ATS8pnumeric162 unique values
0 missing
ATS8mnumeric170 unique values
0 missing
ATS8inumeric170 unique values
0 missing
ATS8enumeric170 unique values
0 missing
ATS7vnumeric163 unique values
0 missing
AMRnumeric175 unique values
0 missing
ATS1vnumeric160 unique values
0 missing
ATS1snumeric159 unique values
0 missing
ATS1pnumeric155 unique values
0 missing
ATS1mnumeric152 unique values
0 missing
ATS1inumeric157 unique values
0 missing
ATS1enumeric154 unique values
0 missing
ARRnumeric90 unique values
0 missing
AMWnumeric164 unique values
0 missing
ATS2enumeric161 unique values
0 missing
ALOGP2numeric174 unique values
0 missing
ALOGPnumeric171 unique values
0 missing
AECCnumeric157 unique values
0 missing
AACnumeric152 unique values
0 missing
SpMin1_Bh.m.numeric112 unique values
0 missing
SpMin1_Bh.e.numeric110 unique values
0 missing
SpMin1_Bh.v.numeric110 unique values
0 missing
ATS3mnumeric163 unique values
0 missing
ATS4snumeric162 unique values
0 missing
ATS4pnumeric166 unique values
0 missing
ATS4mnumeric164 unique values
0 missing
ATS4inumeric163 unique values
0 missing
ATS4enumeric166 unique values
0 missing
ATS3vnumeric164 unique values
0 missing
ATS3snumeric163 unique values
0 missing
ATS3pnumeric163 unique values
0 missing
molecule_id (row identifier)nominal179 unique values
0 missing
ATS3inumeric158 unique values
0 missing
ATS3enumeric163 unique values
0 missing
ATS2vnumeric155 unique values
0 missing
ATS2snumeric163 unique values
0 missing
ATS2pnumeric166 unique values
0 missing
ATS2mnumeric154 unique values
0 missing
ATS2inumeric158 unique values
0 missing

62 properties

179
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.36
First quartile of kurtosis among attributes of the numeric type.
3.47
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.45
First quartile of skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.07
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.9
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.12
Second quartile (Median) of skewness among attributes of the numeric type.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.35
Third quartile of kurtosis among attributes of the numeric type.
4.69
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.11
Third quartile of skewness among attributes of the numeric type.
0.52
Third quartile of standard deviation of attributes of the numeric type.
0.94
Average class difference between consecutive instances.
5.7
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.39
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
17.04
Maximum kurtosis among attributes of the numeric type.
94.8
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.14
Maximum skewness among attributes of the numeric type.
18.79
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.07
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.01
Mean skewness among attributes of the numeric type.
1.05
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.62
Minimum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.64
Minimum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task