DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4198

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4198

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4198 (TID: 20130), and it has 771 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric374 unique values
0 missing
D.Dtr07numeric79 unique values
0 missing
Eig15_AEA.ri.numeric452 unique values
0 missing
P_VSA_e_2numeric625 unique values
0 missing
P_VSA_LogP_7numeric129 unique values
0 missing
N.072numeric14 unique values
0 missing
Neoplastic.80numeric2 unique values
0 missing
Eta_betaP_Anumeric284 unique values
0 missing
Eig10_AEA.ed.numeric454 unique values
0 missing
SpMax5_Bh.e.numeric441 unique values
0 missing
Eig15_EA.ri.numeric471 unique values
0 missing
SM05_AEA.ri.numeric459 unique values
0 missing
Eig10_EA.ed.numeric459 unique values
0 missing
SM09_AEA.dm.numeric387 unique values
0 missing
Eig15_EAnumeric387 unique values
0 missing
CATS2D_05_DLnumeric19 unique values
0 missing
ATS8mnumeric583 unique values
0 missing
GGI4numeric437 unique values
0 missing
Eta_beta_Anumeric336 unique values
0 missing
Chi1_EA.ri.numeric667 unique values
0 missing
SpMin3_Bh.v.numeric291 unique values
0 missing
SpMax3_Bh.i.numeric313 unique values
0 missing
ATSC5enumeric578 unique values
0 missing
DLS_07numeric3 unique values
0 missing
Eig08_AEA.ed.numeric444 unique values
0 missing
CATS2D_04_LLnumeric30 unique values
0 missing
SM14_AEA.bo.numeric429 unique values
0 missing
Eig06_EAnumeric429 unique values
0 missing
MATS3enumeric281 unique values
0 missing
Eig07_AEA.ed.numeric464 unique values
0 missing
C.008numeric12 unique values
0 missing
SssNHnumeric569 unique values
0 missing
P_VSA_MR_5numeric548 unique values
0 missing
nPyrrolidinesnumeric3 unique values
0 missing
Eig09_EA.ri.numeric444 unique values
0 missing
Eig07_EA.ri.numeric482 unique values
0 missing
ATSC7mnumeric694 unique values
0 missing
TRSnumeric46 unique values
0 missing
ATSC8vnumeric689 unique values
0 missing
ATSC8mnumeric690 unique values
0 missing
SpMin5_Bh.v.numeric396 unique values
0 missing
ATS7pnumeric600 unique values
0 missing
SpMin5_Bh.e.numeric381 unique values
0 missing
SpMin5_Bh.i.numeric388 unique values
0 missing
ATSC3mnumeric696 unique values
0 missing
nCsnumeric33 unique values
0 missing
SpMin5_Bh.p.numeric401 unique values
0 missing
ATSC7vnumeric695 unique values
0 missing
SpMin4_Bh.s.numeric379 unique values
0 missing
SpMin6_Bh.m.numeric393 unique values
0 missing
SpMin6_Bh.i.numeric415 unique values
0 missing
SpMin6_Bh.e.numeric419 unique values
0 missing
CATS2D_06_DDnumeric10 unique values
0 missing
CATS2D_03_DDnumeric9 unique values
0 missing
Infective.80numeric2 unique values
0 missing
SpMax4_Bh.v.numeric383 unique values
0 missing
P_VSA_LogP_3numeric144 unique values
0 missing
CATS2D_09_DDnumeric12 unique values
0 missing
GGI7numeric420 unique values
0 missing
H.052numeric28 unique values
0 missing
CATS2D_06_DAnumeric19 unique values
0 missing
SpMAD_EA.bo.numeric334 unique values
0 missing
DLS_05numeric3 unique values
0 missing
molecule_id (row identifier)nominal771 unique values
0 missing
ATS6snumeric582 unique values
0 missing
Eig06_EA.dm.numeric103 unique values
0 missing
ATS8snumeric618 unique values
0 missing
ATSC7pnumeric692 unique values
0 missing
ATSC7inumeric635 unique values
0 missing
DLS_03numeric6 unique values
0 missing
CMC.80numeric2 unique values
0 missing

62 properties

771
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.4
First quartile of kurtosis among attributes of the numeric type.
1.03
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.63
First quartile of skewness among attributes of the numeric type.
0.33
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.78
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.21
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.35
Second quartile (Median) of skewness among attributes of the numeric type.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
4.39
Third quartile of kurtosis among attributes of the numeric type.
6.18
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.73
Third quartile of skewness among attributes of the numeric type.
4.27
Third quartile of standard deviation of attributes of the numeric type.
0.35
Average class difference between consecutive instances.
15.95
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.09
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
40.13
Maximum kurtosis among attributes of the numeric type.
366
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.29
Maximum skewness among attributes of the numeric type.
193.63
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
5.1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.69
Mean skewness among attributes of the numeric type.
10.39
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.96
Minimum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.76
Minimum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task