DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3798

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3798

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3798 (TID: 19904), and it has 584 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric435 unique values
0 missing
nR09numeric5 unique values
0 missing
SpMAD_EA.ed.numeric335 unique values
0 missing
CATS2D_09_ANnumeric3 unique values
0 missing
SpMax_EA.bo.numeric141 unique values
0 missing
SpDiam_EA.bo.numeric141 unique values
0 missing
SM11_AEA.ri.numeric141 unique values
0 missing
Eig01_EA.bo.numeric141 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
MATS2pnumeric235 unique values
0 missing
SpDiam_EA.dm.numeric68 unique values
0 missing
piPC06numeric351 unique values
0 missing
SaaNHnumeric85 unique values
0 missing
CATS2D_01_DAnumeric2 unique values
0 missing
nPyrazolesnumeric2 unique values
0 missing
PDInumeric149 unique values
0 missing
nCIRnumeric15 unique values
0 missing
SM10_EA.bo.numeric370 unique values
0 missing
nCbHnumeric16 unique values
0 missing
nROCONnumeric2 unique values
0 missing
Eta_betaS_Anumeric93 unique values
0 missing
ATSC7enumeric466 unique values
0 missing
SM09_EA.dm.numeric155 unique values
0 missing
CATS2D_09_DDnumeric21 unique values
0 missing
CATS2D_07_DPnumeric9 unique values
0 missing
Eig07_AEA.ri.numeric330 unique values
0 missing
SpMAD_AEA.bo.numeric115 unique values
0 missing
Eig01_EA.dm.numeric45 unique values
0 missing
BLTF96numeric277 unique values
0 missing
MATS1enumeric158 unique values
0 missing
MATS6pnumeric234 unique values
0 missing
SssOnumeric130 unique values
0 missing
SpMax2_Bh.i.numeric138 unique values
0 missing
DLS_03numeric6 unique values
0 missing
SpMax_EA.dm.numeric45 unique values
0 missing
CATS2D_04_NLnumeric3 unique values
0 missing
CATS2D_08_NLnumeric3 unique values
0 missing
CATS2D_04_AAnumeric8 unique values
0 missing
C.041numeric4 unique values
0 missing
nR10numeric3 unique values
0 missing
MATS1pnumeric174 unique values
0 missing
C.025numeric8 unique values
0 missing
CATS2D_05_DNnumeric3 unique values
0 missing
CATS2D_02_NLnumeric3 unique values
0 missing
GATS1enumeric226 unique values
0 missing
nOHsnumeric5 unique values
0 missing
CATS2D_05_NLnumeric4 unique values
0 missing
CATS2D_02_DNnumeric2 unique values
0 missing
IC3numeric365 unique values
0 missing
CATS2D_03_NLnumeric3 unique values
0 missing
nROHnumeric8 unique values
0 missing
SsOHnumeric148 unique values
0 missing
SpDiam_AEA.bo.numeric136 unique values
0 missing
X3Anumeric46 unique values
0 missing
P_VSA_LogP_6numeric81 unique values
0 missing
SM08_EA.dm.numeric201 unique values
0 missing
SpMAD_EAnumeric114 unique values
0 missing
CATS2D_06_ANnumeric3 unique values
0 missing
O.057numeric5 unique values
0 missing
MATS5mnumeric250 unique values
0 missing
MATS1vnumeric97 unique values
0 missing
molecule_id (row identifier)nominal584 unique values
0 missing
X5Anumeric26 unique values
0 missing
PW4numeric69 unique values
0 missing
nRCOOHnumeric4 unique values
0 missing
SpMax2_Bh.v.numeric150 unique values
0 missing
CATS2D_01_DNnumeric4 unique values
0 missing
CATS2D_01_ANnumeric4 unique values
0 missing
MATS1mnumeric112 unique values
0 missing

62 properties

584
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.08
First quartile of kurtosis among attributes of the numeric type.
0.16
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.09
First quartile of skewness among attributes of the numeric type.
0.1
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.89
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.69
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.68
Second quartile (Median) of skewness among attributes of the numeric type.
0.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
5.33
Third quartile of kurtosis among attributes of the numeric type.
3.99
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.47
Third quartile of skewness among attributes of the numeric type.
0.93
Third quartile of standard deviation of attributes of the numeric type.
-0.18
Average class difference between consecutive instances.
2.3
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.12
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
31.16
Maximum kurtosis among attributes of the numeric type.
17.24
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.42
Maximum skewness among attributes of the numeric type.
15.81
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
3.36
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
1.12
Mean skewness among attributes of the numeric type.
1.14
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.91
Minimum kurtosis among attributes of the numeric type.
-3.36
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.23
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task