DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL6084

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL6084

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL6084 (TID: 101435), and it has 111 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric61 unique values
0 missing
ATS6vnumeric99 unique values
0 missing
TWCnumeric92 unique values
0 missing
SRW10numeric92 unique values
0 missing
SpMin5_Bh.i.numeric83 unique values
0 missing
Eig06_EA.ri.numeric83 unique values
0 missing
SpMin5_Bh.v.numeric78 unique values
0 missing
SpMaxA_AEA.dm.numeric77 unique values
0 missing
Eig07_AEA.dm.numeric68 unique values
0 missing
ATSC7vnumeric99 unique values
0 missing
SM12_AEA.dm.numeric76 unique values
0 missing
Eig03_EA.ed.numeric76 unique values
0 missing
ATS6enumeric97 unique values
0 missing
SpMax5_Bh.i.numeric83 unique values
0 missing
SpMin6_Bh.s.numeric75 unique values
0 missing
ATS2snumeric94 unique values
0 missing
MWC10numeric90 unique values
0 missing
ATSC8pnumeric100 unique values
0 missing
ATS1enumeric91 unique values
0 missing
SpMin5_Bh.e.numeric78 unique values
0 missing
SpMin6_Bh.i.numeric62 unique values
0 missing
ATS4vnumeric96 unique values
0 missing
SpMax5_Bh.e.numeric84 unique values
0 missing
SpMax5_Bh.v.numeric81 unique values
0 missing
TIC4numeric93 unique values
0 missing
TIC5numeric93 unique values
0 missing
Eig03_AEA.ed.numeric73 unique values
0 missing
MWC07numeric89 unique values
0 missing
Eta_betaSnumeric51 unique values
0 missing
Eig04_EA.ri.numeric93 unique values
0 missing
SM02_AEA.ed.numeric71 unique values
0 missing
SpAD_EA.ed.numeric92 unique values
0 missing
ATSC8snumeric100 unique values
0 missing
TIC2numeric100 unique values
0 missing
ATS7pnumeric99 unique values
0 missing
X4vnumeric99 unique values
0 missing
ATSC8vnumeric99 unique values
0 missing
ATS8snumeric98 unique values
0 missing
ATS7inumeric99 unique values
0 missing
ATSC7inumeric96 unique values
0 missing
ATS7vnumeric99 unique values
0 missing
TIC3numeric99 unique values
0 missing
ATS6snumeric98 unique values
0 missing
Eig15_EA.ri.numeric75 unique values
0 missing
ATSC8enumeric91 unique values
0 missing
ATS7snumeric98 unique values
0 missing
TIC1numeric99 unique values
0 missing
ATSC8inumeric97 unique values
0 missing
ATS8inumeric99 unique values
0 missing
ATS8enumeric98 unique values
0 missing
molecule_id (row identifier)nominal111 unique values
0 missing
Eig08_AEA.dm.numeric69 unique values
0 missing
ATS7enumeric100 unique values
0 missing
CATS2D_02_ALnumeric11 unique values
0 missing
SpMax5_Bh.p.numeric75 unique values
0 missing
MWC08numeric89 unique values
0 missing
ATS6mnumeric95 unique values
0 missing
X5vnumeric99 unique values
0 missing
IDDEnumeric85 unique values
0 missing
Eig11_AEA.ed.numeric63 unique values
0 missing
Eig11_AEA.ri.numeric76 unique values
0 missing
X3vnumeric100 unique values
0 missing
ATSC7mnumeric100 unique values
0 missing
ATS3snumeric98 unique values
0 missing
Eig15_EA.bo.numeric64 unique values
0 missing
MWC09numeric92 unique values
0 missing

62 properties

111
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.48
Percentage of numeric attributes.
1.52
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.06
First quartile of kurtosis among attributes of the numeric type.
2.42
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.41
First quartile of skewness among attributes of the numeric type.
0.54
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
3.86
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.61
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.19
Second quartile (Median) of skewness among attributes of the numeric type.
0.88
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
9.67
Third quartile of kurtosis among attributes of the numeric type.
10
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.86
Third quartile of skewness among attributes of the numeric type.
2.02
Third quartile of standard deviation of attributes of the numeric type.
0.23
Average class difference between consecutive instances.
25.87
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.59
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
15.88
Maximum kurtosis among attributes of the numeric type.
264.01
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.14
Maximum skewness among attributes of the numeric type.
292.66
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
5.57
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.97
Mean skewness among attributes of the numeric type.
23.47
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.1
Minimum kurtosis among attributes of the numeric type.
-0.73
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.2
Minimum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task