DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3192

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3192

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3192 (TID: 10869), and it has 601 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric391 unique values
0 missing
SM10_EA.dm.numeric212 unique values
0 missing
SdsCHnumeric106 unique values
0 missing
SM08_EA.dm.numeric230 unique values
0 missing
GATS5mnumeric347 unique values
0 missing
SpMax1_Bh.v.numeric226 unique values
0 missing
piPC05numeric432 unique values
0 missing
NdssCnumeric9 unique values
0 missing
MAXDNnumeric398 unique values
0 missing
nCconjnumeric7 unique values
0 missing
P_VSA_MR_7numeric40 unique values
0 missing
C.029numeric3 unique values
0 missing
SdOnumeric551 unique values
0 missing
P_VSA_MR_3numeric20 unique values
0 missing
ATSC5snumeric580 unique values
0 missing
piPC07numeric456 unique values
0 missing
SsOHnumeric396 unique values
0 missing
O.056numeric6 unique values
0 missing
SpMaxA_EA.dm.numeric121 unique values
0 missing
SM15_EA.bo.numeric430 unique values
0 missing
C.034numeric5 unique values
0 missing
SpMin2_Bh.i.numeric223 unique values
0 missing
GATS3enumeric365 unique values
0 missing
nPyrimidinesnumeric2 unique values
0 missing
CATS2D_05_ALnumeric26 unique values
0 missing
GATS8vnumeric266 unique values
0 missing
nROHnumeric6 unique values
0 missing
SM12_EA.dm.numeric199 unique values
0 missing
P_VSA_LogP_5numeric242 unique values
0 missing
N.073numeric3 unique values
0 missing
SpMin2_Bh.e.numeric209 unique values
0 missing
piPC06numeric443 unique values
0 missing
SdssCnumeric478 unique values
0 missing
MATS5mnumeric311 unique values
0 missing
SM14_EA.dm.numeric191 unique values
0 missing
GATS5enumeric423 unique values
0 missing
SpDiam_AEA.dm.numeric149 unique values
0 missing
GATS4snumeric425 unique values
0 missing
SssNHnumeric494 unique values
0 missing
SM06_EA.dm.numeric246 unique values
0 missing
SM04_EA.dm.numeric249 unique values
0 missing
CATS2D_08_DAnumeric11 unique values
0 missing
SpMAD_EA.dm.numeric345 unique values
0 missing
MATS1enumeric227 unique values
0 missing
SRW09numeric34 unique values
0 missing
MATS1snumeric171 unique values
0 missing
NdsCHnumeric5 unique values
0 missing
C.016numeric5 unique values
0 missing
nRNHOnumeric3 unique values
0 missing
CATS2D_01_DDnumeric3 unique values
0 missing
nImidazolesnumeric2 unique values
0 missing
C.043numeric2 unique values
0 missing
GATS5snumeric434 unique values
0 missing
SM11_AEA.ri.numeric252 unique values
0 missing
Psi_i_Anumeric360 unique values
0 missing
Psi_e_Anumeric360 unique values
0 missing
P_VSA_s_6numeric195 unique values
0 missing
NaasNnumeric3 unique values
0 missing
P_VSA_LogP_4numeric127 unique values
0 missing
SRW07numeric16 unique values
0 missing
SpMax_EA.bo.numeric252 unique values
0 missing
SpDiam_EA.bo.numeric252 unique values
0 missing
molecule_id (row identifier)nominal601 unique values
0 missing
Eig01_EA.bo.numeric252 unique values
0 missing
CATS2D_05_DLnumeric20 unique values
0 missing
GATS6snumeric403 unique values
0 missing
SpMax_AEA.dm.numeric141 unique values
0 missing
Eig01_AEA.dm.numeric141 unique values
0 missing
SpMax_EA.dm.numeric86 unique values
0 missing
Eig01_EA.dm.numeric86 unique values
0 missing

62 properties

601
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.57
Percentage of numeric attributes.
1.43
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.94
First quartile of kurtosis among attributes of the numeric type.
0.71
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.01
First quartile of skewness among attributes of the numeric type.
0.31
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
3.61
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.36
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.21
Second quartile (Median) of skewness among attributes of the numeric type.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
11.78
Third quartile of kurtosis among attributes of the numeric type.
5.97
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.62
Third quartile of skewness among attributes of the numeric type.
2.16
Third quartile of standard deviation of attributes of the numeric type.
0.36
Average class difference between consecutive instances.
9.91
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.12
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
32.39
Maximum kurtosis among attributes of the numeric type.
144.44
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.18
Maximum skewness among attributes of the numeric type.
161.53
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
6.35
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
1.05
Mean skewness among attributes of the numeric type.
7.07
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.93
Minimum kurtosis among attributes of the numeric type.
-1.09
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.86
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task