DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4145

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4145

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4145 (TID: 11797), and it has 127 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric80 unique values
0 missing
GATS5pnumeric108 unique values
0 missing
SpMin4_Bh.p.numeric103 unique values
0 missing
MATS7vnumeric104 unique values
0 missing
GATS6snumeric114 unique values
0 missing
piPC10numeric102 unique values
0 missing
GATS7mnumeric108 unique values
0 missing
MATS2enumeric103 unique values
0 missing
GATS8snumeric113 unique values
0 missing
IDEnumeric99 unique values
0 missing
S.107numeric4 unique values
0 missing
MATS7mnumeric104 unique values
0 missing
MATS1enumeric89 unique values
0 missing
SdsCHnumeric47 unique values
0 missing
CATS2D_04_DAnumeric4 unique values
0 missing
SpAD_EA.dm.numeric76 unique values
0 missing
PCDnumeric107 unique values
0 missing
SssSnumeric32 unique values
0 missing
MATS7snumeric109 unique values
0 missing
MATS4enumeric105 unique values
0 missing
D.Dtr06numeric96 unique values
0 missing
nBnznumeric5 unique values
0 missing
nCb.numeric9 unique values
0 missing
SpMin1_Bh.e.numeric75 unique values
0 missing
SpMin1_Bh.i.numeric71 unique values
0 missing
SpMax6_Bh.s.numeric105 unique values
0 missing
GATS5enumeric111 unique values
0 missing
SM04_EA.dm.numeric75 unique values
0 missing
GATS8enumeric115 unique values
0 missing
C.016numeric5 unique values
0 missing
NdsCHnumeric5 unique values
0 missing
nR.Csnumeric5 unique values
0 missing
HVcpxnumeric100 unique values
0 missing
CATS2D_09_DDnumeric4 unique values
0 missing
GATS5mnumeric115 unique values
0 missing
SsOHnumeric99 unique values
0 missing
GATS3enumeric109 unique values
0 missing
H.051numeric8 unique values
0 missing
SpMaxA_EA.dm.numeric59 unique values
0 missing
nImidazolesnumeric2 unique values
0 missing
GATS3snumeric112 unique values
0 missing
SpMax1_Bh.s.numeric27 unique values
0 missing
MATS5mnumeric107 unique values
0 missing
SM06_EA.dm.numeric70 unique values
0 missing
SpDiam_EA.dm.numeric35 unique values
0 missing
P_VSA_LogP_3numeric43 unique values
0 missing
O.056numeric3 unique values
0 missing
P_VSA_MR_3numeric9 unique values
0 missing
MATS3snumeric107 unique values
0 missing
nRNHOnumeric2 unique values
0 missing
CATS2D_01_DDnumeric2 unique values
0 missing
molecule_id (row identifier)nominal127 unique values
0 missing
SM08_EA.dm.numeric66 unique values
0 missing
SM10_EA.dm.numeric61 unique values
0 missing
SM12_EA.dm.numeric57 unique values
0 missing
SM14_EA.dm.numeric52 unique values
0 missing
CATS2D_03_ALnumeric14 unique values
0 missing
nROHnumeric3 unique values
0 missing
CATS2D_03_DAnumeric6 unique values
0 missing
MATS3enumeric100 unique values
0 missing
SaasNnumeric21 unique values
0 missing
GATS7vnumeric106 unique values
0 missing
SM02_EA.dm.numeric75 unique values
0 missing
piPC09numeric105 unique values
0 missing
MATS5vnumeric101 unique values
0 missing
GATS7pnumeric101 unique values
0 missing
NssSnumeric4 unique values
0 missing

62 properties

127
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.32
First quartile of kurtosis among attributes of the numeric type.
0.38
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.18
First quartile of skewness among attributes of the numeric type.
0.18
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.07
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.5
Second quartile (Median) of skewness among attributes of the numeric type.
0.54
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
3.8
Third quartile of kurtosis among attributes of the numeric type.
4.44
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.28
Third quartile of skewness among attributes of the numeric type.
1.46
Third quartile of standard deviation of attributes of the numeric type.
0.27
Average class difference between consecutive instances.
6.44
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.53
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
18.42
Maximum kurtosis among attributes of the numeric type.
164.15
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.3
Maximum skewness among attributes of the numeric type.
131.5
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.28
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.53
Mean skewness among attributes of the numeric type.
4.02
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.99
Minimum kurtosis among attributes of the numeric type.
-0.09
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.18
Minimum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task