DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1949

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1949

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1949 (TID: 180), and it has 130 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric111 unique values
0 missing
SpMax3_Bh.i.numeric42 unique values
0 missing
NaaCHnumeric13 unique values
0 missing
nROHnumeric5 unique values
0 missing
SpMin4_Bh.i.numeric61 unique values
0 missing
IC0numeric84 unique values
0 missing
AACnumeric84 unique values
0 missing
SpMax2_Bh.v.numeric57 unique values
0 missing
SpMax2_Bh.p.numeric51 unique values
0 missing
Uinumeric19 unique values
0 missing
CATS2D_03_ALnumeric23 unique values
0 missing
SpMin5_Bh.s.numeric72 unique values
0 missing
H.046numeric19 unique values
0 missing
CATS2D_01_LLnumeric27 unique values
0 missing
SIC2numeric83 unique values
0 missing
SpDiam_EA.bo.numeric39 unique values
0 missing
Mpnumeric65 unique values
0 missing
Eig01_AEA.bo.numeric37 unique values
0 missing
SpMax_AEA.bo.numeric37 unique values
0 missing
SpMax3_Bh.v.numeric41 unique values
0 missing
MATS3enumeric85 unique values
0 missing
BIC1numeric76 unique values
0 missing
CATS2D_06_DLnumeric15 unique values
0 missing
CIC2numeric108 unique values
0 missing
Eta_FLnumeric103 unique values
0 missing
H.047numeric28 unique values
0 missing
P_VSA_e_2numeric98 unique values
0 missing
P_VSA_s_4numeric58 unique values
0 missing
SIC1numeric75 unique values
0 missing
SpMin4_Bh.m.numeric49 unique values
0 missing
SpMin4_Bh.p.numeric72 unique values
0 missing
SpMin4_Bh.v.numeric67 unique values
0 missing
C.numeric49 unique values
0 missing
Eta_betanumeric65 unique values
0 missing
SM14_EA.bo.numeric90 unique values
0 missing
GATS2mnumeric92 unique values
0 missing
P_VSA_i_2numeric98 unique values
0 missing
piPC03numeric66 unique values
0 missing
MATS5enumeric100 unique values
0 missing
CIC3numeric104 unique values
0 missing
BIC3numeric80 unique values
0 missing
SaaCHnumeric76 unique values
0 missing
SM15_EA.bo.numeric88 unique values
0 missing
SIC3numeric74 unique values
0 missing
Eta_F_Anumeric101 unique values
0 missing
SpMin2_Bh.m.numeric52 unique values
0 missing
GATS2vnumeric82 unique values
0 missing
SpMin3_Bh.i.numeric33 unique values
0 missing
SpMin3_Bh.e.numeric36 unique values
0 missing
SpMin3_Bh.v.numeric55 unique values
0 missing
molecule_id (row identifier)nominal130 unique values
0 missing
SdSnumeric14 unique values
0 missing
Eta_sh_ynumeric80 unique values
0 missing
BIC2numeric77 unique values
0 missing
SpMin4_Bh.e.numeric65 unique values
0 missing
nABnumeric9 unique values
0 missing
nCarnumeric13 unique values
0 missing
Vindexnumeric60 unique values
0 missing
Xindexnumeric69 unique values
0 missing
Yindexnumeric83 unique values
0 missing
Eig01_EA.bo.numeric37 unique values
0 missing
SM11_AEA.ri.numeric37 unique values
0 missing
SpMax_EA.bo.numeric37 unique values
0 missing
SIC4numeric73 unique values
0 missing
ARRnumeric32 unique values
0 missing
IC1numeric99 unique values
0 missing

62 properties

130
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.48
Percentage of numeric attributes.
1.52
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.57
First quartile of kurtosis among attributes of the numeric type.
0.82
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.24
First quartile of skewness among attributes of the numeric type.
0.11
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.81
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.01
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.13
Second quartile (Median) of skewness among attributes of the numeric type.
0.26
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.47
Third quartile of kurtosis among attributes of the numeric type.
6.71
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.73
Third quartile of skewness among attributes of the numeric type.
1.52
Third quartile of standard deviation of attributes of the numeric type.
0.04
Average class difference between consecutive instances.
15.39
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.51
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
23.01
Maximum kurtosis among attributes of the numeric type.
233.43
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.59
Maximum skewness among attributes of the numeric type.
110.91
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.52
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.21
Mean skewness among attributes of the numeric type.
7.14
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.88
Minimum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.27
Minimum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task