DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075228

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075228

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1075228 (TID: 102927), and it has 212 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric138 unique values
0 missing
SM07_EA.ed.numeric157 unique values
0 missing
CATS2D_09_DLnumeric9 unique values
0 missing
MATS8inumeric127 unique values
0 missing
Chi1_EAnumeric163 unique values
0 missing
Chi1_AEA.ri.numeric163 unique values
0 missing
Chi1_AEA.ed.numeric163 unique values
0 missing
Chi1_AEA.dm.numeric163 unique values
0 missing
Chi1_AEA.bo.numeric163 unique values
0 missing
S3Knumeric175 unique values
0 missing
X5Anumeric24 unique values
0 missing
SM03_EA.dm.numeric26 unique values
0 missing
SpMax1_Bh.e.numeric100 unique values
0 missing
nCconjnumeric7 unique values
0 missing
SM08_EA.ri.numeric179 unique values
0 missing
SdsCHnumeric43 unique values
0 missing
piPC08numeric159 unique values
0 missing
SM08_EA.ed.numeric154 unique values
0 missing
SM09_EA.ed.numeric152 unique values
0 missing
SM10_EA.ed.numeric158 unique values
0 missing
SM11_EA.ed.numeric153 unique values
0 missing
SM12_EA.ed.numeric149 unique values
0 missing
SM13_EA.ed.numeric152 unique values
0 missing
SM15_AEA.ed.numeric153 unique values
0 missing
NdsCHnumeric4 unique values
0 missing
NsssNnumeric4 unique values
0 missing
SpAD_AEA.bo.numeric167 unique values
0 missing
SpAD_AEA.dm.numeric195 unique values
0 missing
SpAD_AEA.ri.numeric196 unique values
0 missing
SpAD_EAnumeric165 unique values
0 missing
SM07_EA.ri.numeric167 unique values
0 missing
SpMax4_Bh.p.numeric119 unique values
0 missing
SM05_EA.ed.numeric149 unique values
0 missing
SM10_EA.ri.numeric174 unique values
0 missing
X2Anumeric35 unique values
0 missing
nRCONHRnumeric3 unique values
0 missing
Eig01_EA.ri.numeric105 unique values
0 missing
SpDiam_EA.ri.numeric105 unique values
0 missing
SpMax_EA.ri.numeric105 unique values
0 missing
MAXDPnumeric181 unique values
0 missing
SM15_EA.ri.numeric184 unique values
0 missing
SM14_EA.ri.numeric186 unique values
0 missing
piPC10numeric159 unique values
0 missing
GNarnumeric87 unique values
0 missing
SM13_EA.ri.numeric184 unique values
0 missing
SM11_EA.ri.numeric174 unique values
0 missing
SM12_EA.ri.numeric189 unique values
0 missing
CATS2D_05_DLnumeric11 unique values
0 missing
X0Anumeric41 unique values
0 missing
molecule_id (row identifier)nominal212 unique values
0 missing
SsssNnumeric172 unique values
0 missing
MCDnumeric82 unique values
0 missing
SM09_EA.ri.numeric177 unique values
0 missing
MPC06numeric75 unique values
0 missing
SM06_EA.ri.numeric171 unique values
0 missing
nCIRnumeric6 unique values
0 missing
MPC07numeric80 unique values
0 missing
SpMin2_Bh.m.numeric97 unique values
0 missing
CATS2D_04_AAnumeric5 unique values
0 missing
SpAD_EA.ri.numeric196 unique values
0 missing
MPC09numeric99 unique values
0 missing
SM05_EA.dm.numeric35 unique values
0 missing
SM07_EA.dm.numeric36 unique values
0 missing
SpMaxA_EA.dm.numeric58 unique values
0 missing
piPC06numeric154 unique values
0 missing

62 properties

212
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.46
Percentage of numeric attributes.
1.54
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.58
First quartile of kurtosis among attributes of the numeric type.
2.24
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.23
First quartile of skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.19
Second quartile (Median) of kurtosis among attributes of the numeric type.
6.45
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.5
Second quartile (Median) of skewness among attributes of the numeric type.
0.67
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.62
Third quartile of kurtosis among attributes of the numeric type.
17.79
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.93
Third quartile of skewness among attributes of the numeric type.
1.38
Third quartile of standard deviation of attributes of the numeric type.
0.26
Average class difference between consecutive instances.
12.4
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.31
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
24.37
Maximum kurtosis among attributes of the numeric type.
55.2
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.5
Maximum skewness among attributes of the numeric type.
6.02
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.94
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.36
Mean skewness among attributes of the numeric type.
1.19
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.93
Minimum kurtosis among attributes of the numeric type.
-0.01
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.56
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task