DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3199

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3199

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3199 (TID: 10667), and it has 894 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric624 unique values
0 missing
AMRnumeric721 unique values
0 missing
UNIPnumeric259 unique values
0 missing
SpMin7_Bh.i.numeric412 unique values
0 missing
nArNHOnumeric2 unique values
0 missing
CATS2D_09_ANnumeric2 unique values
0 missing
CATS2D_08_ANnumeric2 unique values
0 missing
CATS2D_07_ANnumeric2 unique values
0 missing
CATS2D_05_ANnumeric2 unique values
0 missing
SpMin7_Bh.p.numeric437 unique values
0 missing
Eta_betaSnumeric112 unique values
0 missing
SpMin6_Bh.e.numeric432 unique values
0 missing
X0solnumeric398 unique values
0 missing
CATS2D_08_DAnumeric5 unique values
0 missing
Sinumeric580 unique values
0 missing
SpMin7_Bh.v.numeric433 unique values
0 missing
ATS1enumeric485 unique values
0 missing
SpMin6_Bh.i.numeric461 unique values
0 missing
Eig09_EA.ed.numeric457 unique values
0 missing
IDMnumeric589 unique values
0 missing
ATS1inumeric483 unique values
0 missing
ON0numeric196 unique values
0 missing
X2vnumeric779 unique values
0 missing
NaasNnumeric3 unique values
0 missing
ATS2enumeric514 unique values
0 missing
nBTnumeric104 unique values
0 missing
SM04_AEA.ri.numeric457 unique values
0 missing
Eta_Cnumeric838 unique values
0 missing
Psi_e_0numeric749 unique values
0 missing
SpMaxA_EA.bo.numeric170 unique values
0 missing
ATS1snumeric504 unique values
0 missing
ATSC1pnumeric602 unique values
0 missing
Dznumeric205 unique values
0 missing
ATS4enumeric595 unique values
0 missing
CENTnumeric594 unique values
0 missing
ATS5enumeric631 unique values
0 missing
Eig15_EAnumeric506 unique values
0 missing
GGI1numeric25 unique values
0 missing
Eig15_AEA.ri.numeric617 unique values
0 missing
Eta_FLnumeric544 unique values
0 missing
ATSC6enumeric522 unique values
0 missing
Psi_i_tnumeric17 unique values
0 missing
ATSC6mnumeric833 unique values
0 missing
GGI10numeric163 unique values
0 missing
SM09_AEA.dm.numeric506 unique values
0 missing
ATSC2enumeric379 unique values
0 missing
DBInumeric70 unique values
0 missing
Chi0_EA.dm.numeric484 unique values
0 missing
ATSC5pnumeric817 unique values
0 missing
ATSC5mnumeric836 unique values
0 missing
SpMaxA_EA.ed.numeric283 unique values
0 missing
DECCnumeric529 unique values
0 missing
P_VSA_i_3numeric365 unique values
0 missing
SpMin6_Bh.p.numeric418 unique values
0 missing
piPC03numeric355 unique values
0 missing
nATnumeric99 unique values
0 missing
ISIZnumeric99 unique values
0 missing
Senumeric571 unique values
0 missing
Eig04_EA.dm.numeric55 unique values
0 missing
Eig08_AEA.dm.numeric538 unique values
0 missing
TIEnumeric840 unique values
0 missing
ATS8snumeric648 unique values
0 missing
molecule_id (row identifier)nominal894 unique values
0 missing
Vxnumeric569 unique values
0 missing
VvdwMGnumeric569 unique values
0 missing
Uindexnumeric680 unique values
0 missing
ON0Vnumeric435 unique values
0 missing
SAtotnumeric658 unique values
0 missing
Hypnotic.80numeric2 unique values
0 missing
GGI8numeric255 unique values
0 missing

62 properties

894
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.57
Percentage of numeric attributes.
1.43
Percentage of nominal attributes.
First quartile of entropy among attributes.
1.16
First quartile of kurtosis among attributes of the numeric type.
0.45
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.1
First quartile of skewness among attributes of the numeric type.
0.28
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.63
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.98
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.05
Second quartile (Median) of skewness among attributes of the numeric type.
0.89
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
4.35
Third quartile of kurtosis among attributes of the numeric type.
32.44
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.53
Third quartile of skewness among attributes of the numeric type.
15.55
Third quartile of standard deviation of attributes of the numeric type.
-0.05
Average class difference between consecutive instances.
67.91
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.08
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
41.22
Maximum kurtosis among attributes of the numeric type.
1710.62
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.64
Maximum skewness among attributes of the numeric type.
1630.36
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
3.61
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
1.07
Mean skewness among attributes of the numeric type.
39.51
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.86
Minimum kurtosis among attributes of the numeric type.
-0.12
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.04
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task