DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2708

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2708

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2708 (TID: 11870), and it has 129 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric52 unique values
0 missing
CATS2D_04_LLnumeric25 unique values
0 missing
SaaaCnumeric89 unique values
0 missing
nBnznumeric5 unique values
0 missing
SpMAD_AEA.ri.numeric75 unique values
0 missing
SM06_EA.bo.numeric109 unique values
0 missing
CATS2D_05_LLnumeric28 unique values
0 missing
PW4numeric60 unique values
0 missing
nCICnumeric7 unique values
0 missing
MPC04numeric67 unique values
0 missing
SpMAD_EAnumeric79 unique values
0 missing
MWC07numeric104 unique values
0 missing
SM07_EA.bo.numeric108 unique values
0 missing
TRSnumeric23 unique values
0 missing
P_VSA_MR_7numeric48 unique values
0 missing
piPC04numeric107 unique values
0 missing
SpDiam_AEA.bo.numeric101 unique values
0 missing
SM08_EA.bo.numeric107 unique values
0 missing
CATS2D_01_LLnumeric20 unique values
0 missing
SM05_EA.bo.numeric102 unique values
0 missing
SpMin1_Bh.i.numeric80 unique values
0 missing
Eig01_EAnumeric85 unique values
0 missing
SM09_AEA.bo.numeric85 unique values
0 missing
SM15_EA.ed.numeric97 unique values
0 missing
SpDiam_EAnumeric85 unique values
0 missing
SpDiam_EA.ed.numeric95 unique values
0 missing
SpMax_EAnumeric85 unique values
0 missing
Eig01_EA.ri.numeric100 unique values
0 missing
SpDiam_EA.ri.numeric99 unique values
0 missing
SpMax_EA.ri.numeric100 unique values
0 missing
SM04_EA.bo.numeric109 unique values
0 missing
piIDnumeric112 unique values
0 missing
SM13_EA.ed.numeric98 unique values
0 missing
Eig01_EA.ed.numeric92 unique values
0 missing
nCb.numeric12 unique values
0 missing
piPC08numeric114 unique values
0 missing
piPC07numeric107 unique values
0 missing
piPC06numeric111 unique values
0 missing
MPC07numeric86 unique values
0 missing
SpMax_EA.bo.numeric92 unique values
0 missing
SpMax1_Bh.p.numeric88 unique values
0 missing
SpDiam_EA.bo.numeric92 unique values
0 missing
SM11_AEA.ri.numeric92 unique values
0 missing
piPC09numeric114 unique values
0 missing
MPC10numeric96 unique values
0 missing
MPC09numeric95 unique values
0 missing
MPC08numeric95 unique values
0 missing
Eig01_EA.bo.numeric92 unique values
0 missing
Rbridnumeric8 unique values
0 missing
nCIRnumeric12 unique values
0 missing
X3Anumeric39 unique values
0 missing
molecule_id (row identifier)nominal129 unique values
0 missing
piPC10numeric116 unique values
0 missing
SM09_EA.bo.numeric106 unique values
0 missing
SM10_EA.bo.numeric106 unique values
0 missing
nR09numeric7 unique values
0 missing
X1Anumeric43 unique values
0 missing
X2Anumeric50 unique values
0 missing
piPC05numeric109 unique values
0 missing
PW3numeric57 unique values
0 missing
C.025numeric10 unique values
0 missing
D.Dtr12numeric30 unique values
0 missing
nR12numeric5 unique values
0 missing
MPC05numeric72 unique values
0 missing
NRSnumeric5 unique values
0 missing
PW5numeric52 unique values
0 missing
MWC08numeric105 unique values
0 missing

62 properties

129
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.98
First quartile of kurtosis among attributes of the numeric type.
3.28
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.1
First quartile of skewness among attributes of the numeric type.
0.27
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.7
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.63
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.33
Second quartile (Median) of skewness among attributes of the numeric type.
0.61
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0.06
Third quartile of kurtosis among attributes of the numeric type.
10.12
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.76
Third quartile of skewness among attributes of the numeric type.
2.01
Third quartile of standard deviation of attributes of the numeric type.
0.13
Average class difference between consecutive instances.
9.29
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.52
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
3.22
Maximum kurtosis among attributes of the numeric type.
99.97
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.08
Maximum skewness among attributes of the numeric type.
186.18
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.45
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.44
Mean skewness among attributes of the numeric type.
4.91
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.52
Minimum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.51
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task