DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5980

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5980

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5980 (TID: 100686), and it has 197 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric30 unique values
0 missing
SsNH2numeric38 unique values
0 missing
Hynumeric161 unique values
0 missing
SpMin3_Bh.s.numeric162 unique values
0 missing
Sinumeric184 unique values
0 missing
S3Knumeric185 unique values
0 missing
S2Knumeric183 unique values
0 missing
RBNnumeric19 unique values
0 missing
P_VSA_i_3numeric168 unique values
0 missing
PHInumeric184 unique values
0 missing
NssCH2numeric15 unique values
0 missing
NsNH2numeric6 unique values
0 missing
nRNH2numeric5 unique values
0 missing
nNnumeric12 unique values
0 missing
nHDonnumeric12 unique values
0 missing
nC..N.N2numeric3 unique values
0 missing
N.066numeric5 unique values
0 missing
H.050numeric12 unique values
0 missing
ATS5inumeric182 unique values
0 missing
Mpnumeric102 unique values
0 missing
H.052numeric13 unique values
0 missing
ATSC1mnumeric185 unique values
0 missing
ATS6pnumeric185 unique values
0 missing
ATSC8inumeric183 unique values
0 missing
ATSC1vnumeric183 unique values
0 missing
ATS6inumeric183 unique values
0 missing
ATS6enumeric187 unique values
0 missing
SsssCHnumeric57 unique values
0 missing
ATS5enumeric182 unique values
0 missing
ATS4enumeric176 unique values
0 missing
ATSC3vnumeric188 unique values
0 missing
ATSC2mnumeric187 unique values
0 missing
Uindexnumeric190 unique values
0 missing
TPSA.NO.numeric159 unique values
0 missing
TIEnumeric194 unique values
0 missing
CATS2D_09_APnumeric8 unique values
0 missing
ATSC6inumeric191 unique values
0 missing
ATSC2vnumeric185 unique values
0 missing
ATSC1pnumeric183 unique values
0 missing
ATS1inumeric174 unique values
0 missing
SpMin4_Bh.m.numeric144 unique values
0 missing
SpMin2_Bh.s.numeric135 unique values
0 missing
nHnumeric37 unique values
0 missing
CIC0numeric171 unique values
0 missing
ATSC6pnumeric193 unique values
0 missing
ATSC8pnumeric191 unique values
0 missing
ATSC2pnumeric188 unique values
0 missing
ATS8inumeric184 unique values
0 missing
ATS8enumeric182 unique values
0 missing
ATS7pnumeric186 unique values
0 missing
ATS7inumeric182 unique values
0 missing
ATS7enumeric185 unique values
0 missing
SpMin6_Bh.s.numeric128 unique values
0 missing
CATS2D_00_PPnumeric6 unique values
0 missing
DLS_07numeric3 unique values
0 missing
DLS_06numeric6 unique values
0 missing
DLS_03numeric5 unique values
0 missing
DBInumeric55 unique values
0 missing
CATS2D_08_APnumeric6 unique values
0 missing
CATS2D_07_DPnumeric6 unique values
0 missing
CATS2D_02_PPnumeric3 unique values
0 missing
CATS2D_02_DPnumeric3 unique values
0 missing
molecule_id (row identifier)nominal197 unique values
0 missing
CATS2D_00_DPnumeric6 unique values
0 missing
CATS2D_00_DDnumeric6 unique values
0 missing
ATSC8vnumeric189 unique values
0 missing
ATSC7vnumeric193 unique values
0 missing
ATSC7pnumeric193 unique values
0 missing
ATSC7inumeric186 unique values
0 missing
ATSC6vnumeric193 unique values
0 missing

62 properties

197
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.57
Percentage of numeric attributes.
1.43
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.94
First quartile of kurtosis among attributes of the numeric type.
0.87
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.33
First quartile of skewness among attributes of the numeric type.
0.61
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.68
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.79
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.51
Second quartile (Median) of skewness among attributes of the numeric type.
1.48
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
3.28
Third quartile of kurtosis among attributes of the numeric type.
7.76
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.99
Third quartile of skewness among attributes of the numeric type.
5.63
Third quartile of standard deviation of attributes of the numeric type.
0.84
Average class difference between consecutive instances.
13.1
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.36
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
24.12
Maximum kurtosis among attributes of the numeric type.
308.19
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.36
Maximum skewness among attributes of the numeric type.
124.99
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.39
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
1.13
Mean skewness among attributes of the numeric type.
7.98
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.5
Minimum kurtosis among attributes of the numeric type.
-0.6
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.09
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task