DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2107

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2107

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2107 (TID: 10473), and it has 376 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric242 unique values
0 missing
piPC05numeric215 unique values
0 missing
Eig12_EA.dm.numeric27 unique values
0 missing
SpMax6_Bh.p.numeric197 unique values
0 missing
SM05_EA.bo.numeric176 unique values
0 missing
MPC09numeric165 unique values
0 missing
TPSA.NO.numeric144 unique values
0 missing
SAaccnumeric120 unique values
0 missing
P_VSA_v_2numeric131 unique values
0 missing
P_VSA_p_2numeric126 unique values
0 missing
nHDonnumeric38 unique values
0 missing
H.050numeric38 unique values
0 missing
Eig10_EA.bo.numeric151 unique values
0 missing
CATS2D_06_ALnumeric38 unique values
0 missing
IC1numeric221 unique values
0 missing
Eta_betaPnumeric63 unique values
0 missing
Eig04_EA.ri.numeric192 unique values
0 missing
piPC04numeric218 unique values
0 missing
SpMax6_Bh.v.numeric195 unique values
0 missing
SpMin6_Bh.p.numeric191 unique values
0 missing
IC2numeric250 unique values
0 missing
CATS2D_08_ALnumeric39 unique values
0 missing
Eig05_EA.bo.numeric169 unique values
0 missing
H.047numeric47 unique values
0 missing
SM15_AEA.ri.numeric169 unique values
0 missing
CATS2D_05_DAnumeric25 unique values
0 missing
P_VSA_MR_6numeric153 unique values
0 missing
Eig04_EAnumeric176 unique values
0 missing
SM12_AEA.bo.numeric176 unique values
0 missing
SAdonnumeric86 unique values
0 missing
SM06_EA.bo.numeric219 unique values
0 missing
Eig06_EA.dm.numeric39 unique values
0 missing
Eig10_EA.ed.numeric155 unique values
0 missing
MPC05numeric127 unique values
0 missing
Eig07_EA.bo.numeric150 unique values
0 missing
SpMax5_Bh.p.numeric191 unique values
0 missing
SpMax5_Bh.i.numeric168 unique values
0 missing
SpMax5_Bh.e.numeric173 unique values
0 missing
Rperimnumeric37 unique values
0 missing
Eig08_AEA.bo.numeric150 unique values
0 missing
RFDnumeric37 unique values
0 missing
Qindexnumeric45 unique values
0 missing
piPC03numeric201 unique values
0 missing
SpMax6_Bh.m.numeric200 unique values
0 missing
Eig06_EA.bo.numeric174 unique values
0 missing
Wapnumeric217 unique values
0 missing
TPCnumeric185 unique values
0 missing
Eig07_AEA.bo.numeric145 unique values
0 missing
SpMax5_Bh.v.numeric190 unique values
0 missing
nNnumeric31 unique values
0 missing
N.numeric85 unique values
0 missing
Eig08_AEA.ed.numeric161 unique values
0 missing
CATS2D_07_ALnumeric41 unique values
0 missing
P_VSA_e_3numeric100 unique values
0 missing
SM04_EA.bo.numeric213 unique values
0 missing
Eig06_AEA.bo.numeric167 unique values
0 missing
Eig04_AEA.ri.numeric193 unique values
0 missing
SM15_AEA.dm.numeric177 unique values
0 missing
SM03_AEA.ri.numeric177 unique values
0 missing
Eig08_EA.ed.numeric177 unique values
0 missing
molecule_id (row identifier)nominal376 unique values
0 missing
Eig06_EA.ri.numeric190 unique values
0 missing
Eig06_EA.ed.numeric177 unique values
0 missing
Eig06_AEA.ri.numeric191 unique values
0 missing
Eig06_AEA.ed.numeric151 unique values
0 missing
CATS2D_08_AAnumeric20 unique values
0 missing
CATS2D_05_AAnumeric20 unique values
0 missing
TRSnumeric37 unique values
0 missing

62 properties

376
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.56
First quartile of kurtosis among attributes of the numeric type.
3.36
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.62
First quartile of skewness among attributes of the numeric type.
0.47
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.12
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.18
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.1
Second quartile (Median) of skewness among attributes of the numeric type.
0.77
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.64
Third quartile of kurtosis among attributes of the numeric type.
13.37
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.18
Third quartile of skewness among attributes of the numeric type.
11.81
Third quartile of standard deviation of attributes of the numeric type.
-0.15
Average class difference between consecutive instances.
5425.67
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.18
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
17.19
Maximum kurtosis among attributes of the numeric type.
360828.44
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.37
Maximum skewness among attributes of the numeric type.
747179.92
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.58
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.2
Mean skewness among attributes of the numeric type.
11190.79
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.43
Minimum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.13
Minimum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task