DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3514

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3514

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3514 (TID: 10138), and it has 296 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric159 unique values
0 missing
ATSC5vnumeric287 unique values
0 missing
P_VSA_s_3numeric211 unique values
0 missing
Eig07_EA.dm.numeric21 unique values
0 missing
Eig05_AEA.dm.numeric146 unique values
0 missing
Eig06_AEA.dm.numeric138 unique values
0 missing
Eta_Lnumeric269 unique values
0 missing
ATSC2pnumeric256 unique values
0 missing
SpMin5_Bh.s.numeric193 unique values
0 missing
IC4numeric201 unique values
0 missing
P_VSA_LogP_3numeric38 unique values
0 missing
Eig15_EA.bo.numeric139 unique values
0 missing
Eig15_EA.ri.numeric150 unique values
0 missing
Eig15_AEA.ri.numeric142 unique values
0 missing
C.025numeric7 unique values
0 missing
Eig15_AEA.bo.numeric112 unique values
0 missing
ATS4enumeric241 unique values
0 missing
SM05_EA.dm.numeric34 unique values
0 missing
SM07_EA.dm.numeric29 unique values
0 missing
SM09_EA.dm.numeric22 unique values
0 missing
SpMin8_Bh.m.numeric196 unique values
0 missing
PHInumeric246 unique values
0 missing
nHetnumeric14 unique values
0 missing
Eig06_EA.dm.numeric23 unique values
0 missing
Eig05_EA.dm.numeric22 unique values
0 missing
SM03_EA.dm.numeric23 unique values
0 missing
ATSC4vnumeric287 unique values
0 missing
ATS5inumeric248 unique values
0 missing
SsFnumeric162 unique values
0 missing
SpMin4_Bh.v.numeric166 unique values
0 missing
SpMin3_Bh.p.numeric105 unique values
0 missing
SpMin3_Bh.e.numeric120 unique values
0 missing
IC3numeric235 unique values
0 missing
UNIPnumeric153 unique values
0 missing
IDETnumeric224 unique values
0 missing
X1MulPernumeric257 unique values
0 missing
Xunumeric227 unique values
0 missing
DLS_02numeric6 unique values
0 missing
X1Pernumeric263 unique values
0 missing
DLS_01numeric3 unique values
0 missing
cRo5numeric2 unique values
0 missing
SpMin7_Bh.p.numeric198 unique values
0 missing
X1vnumeric269 unique values
0 missing
SpMax6_Bh.v.numeric218 unique values
0 missing
RDCHInumeric214 unique values
0 missing
SpMax6_Bh.p.numeric198 unique values
0 missing
DLS_consnumeric39 unique values
0 missing
SpMin6_Bh.i.numeric193 unique values
0 missing
SpMin7_Bh.v.numeric196 unique values
0 missing
SpMin6_Bh.e.numeric203 unique values
0 missing
molecule_id (row identifier)nominal296 unique values
0 missing
SpMin8_Bh.i.numeric189 unique values
0 missing
ATSC6pnumeric286 unique values
0 missing
SpMin8_Bh.e.numeric178 unique values
0 missing
ATS1inumeric211 unique values
0 missing
Eta_Cnumeric291 unique values
0 missing
CATS2D_03_LLnumeric20 unique values
0 missing
SpMin4_Bh.m.numeric163 unique values
0 missing
C.024numeric10 unique values
0 missing
nCarnumeric12 unique values
0 missing
P_VSA_s_4numeric128 unique values
0 missing
ATSC7vnumeric288 unique values
0 missing
ATSC6vnumeric286 unique values
0 missing
ATS6inumeric251 unique values
0 missing
ATSC5pnumeric289 unique values
0 missing
DLS_06numeric5 unique values
0 missing

62 properties

296
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.48
Percentage of numeric attributes.
1.52
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.06
First quartile of kurtosis among attributes of the numeric type.
1.31
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.95
First quartile of skewness among attributes of the numeric type.
0.29
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.76
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.64
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.33
Second quartile (Median) of skewness among attributes of the numeric type.
0.83
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.07
Third quartile of kurtosis among attributes of the numeric type.
11.96
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
-0.02
Third quartile of skewness among attributes of the numeric type.
4.59
Third quartile of standard deviation of attributes of the numeric type.
-0.08
Average class difference between consecutive instances.
53.71
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.22
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
8.44
Maximum kurtosis among attributes of the numeric type.
2670.94
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.45
Maximum skewness among attributes of the numeric type.
1461.94
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.08
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.49
Mean skewness among attributes of the numeric type.
27.34
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.99
Minimum kurtosis among attributes of the numeric type.
0.3
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.52
Minimum skewness among attributes of the numeric type.
0.11
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task