DEVELOPMENT... OpenML
Data
Ailerons

Ailerons

active ARFF Publicly available Visibility: public Uploaded 19-08-2014 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Luis Torgo","Rui Camacho Source: Unknown - 2014-08-18 Please cite: This data set addresses a control problem, namely flying a F16 aircraft. The attributes describe the status of the aeroplane, while the goal is to predict the control action on the ailerons of the aircraft.

41 features

goal (target)numeric35 unique values
0 missing
SeTime12numeric60 unique values
0 missing
SeTime11numeric59 unique values
0 missing
SeTime13numeric60 unique values
0 missing
SeTime14numeric58 unique values
0 missing
diffSeTime1numeric10 unique values
0 missing
diffSeTime2numeric3 unique values
0 missing
diffSeTime3numeric10 unique values
0 missing
diffSeTime4numeric4 unique values
0 missing
diffSeTime5numeric10 unique values
0 missing
diffSeTime6numeric4 unique values
0 missing
diffSeTime7numeric10 unique values
0 missing
diffSeTime8numeric3 unique values
0 missing
diffSeTime9numeric10 unique values
0 missing
diffSeTime10numeric7 unique values
0 missing
diffSeTime11numeric12 unique values
0 missing
diffSeTime12numeric6 unique values
0 missing
diffSeTime13numeric13 unique values
0 missing
diffSeTime14numeric5 unique values
0 missing
alphanumeric17 unique values
0 missing
Senumeric58 unique values
0 missing
SeTime1numeric60 unique values
0 missing
Sgznumeric182 unique values
0 missing
pnumeric193 unique values
0 missing
qnumeric99 unique values
0 missing
curPitchnumeric233 unique values
0 missing
curRollnumeric61 unique values
0 missing
absRollnumeric21 unique values
0 missing
diffClbnumeric88 unique values
0 missing
diffRollRatenumeric117 unique values
0 missing
diffDiffClbnumeric141 unique values
0 missing
climbRatenumeric1411 unique values
0 missing
SeTime2numeric61 unique values
0 missing
SeTime3numeric61 unique values
0 missing
SeTime4numeric60 unique values
0 missing
SeTime5numeric60 unique values
0 missing
SeTime6numeric61 unique values
0 missing
SeTime7numeric61 unique values
0 missing
SeTime8numeric60 unique values
0 missing
SeTime9numeric60 unique values
0 missing
SeTime10numeric59 unique values
0 missing

107 properties

13750
Number of instances (rows) of the dataset.
41
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
41
Number of numeric attributes.
0
Number of nominal attributes.
1
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
6874.5
Maximum kurtosis among attributes of the numeric type.
0.63
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.37
Maximum skewness among attributes of the numeric type.
260.21
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
894.56
Mean kurtosis among attributes of the numeric type.
-0.83
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-4.48
Mean skewness among attributes of the numeric type.
7.41
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.62
Minimum kurtosis among attributes of the numeric type.
-12.6
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-75.97
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
100
Percentage of numeric attributes.
0
Percentage of nominal attributes.
First quartile of entropy among attributes.
4.67
First quartile of kurtosis among attributes of the numeric type.
-0
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-2.14
First quartile of skewness among attributes of the numeric type.
0
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
6.99
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.11
Second quartile (Median) of skewness among attributes of the numeric type.
0.01
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
15.44
Third quartile of kurtosis among attributes of the numeric type.
0.02
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.35
Third quartile of skewness among attributes of the numeric type.
0.07
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

15 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: goal
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: goal
0 runs - estimation_procedure: 33% Holdout set - target_feature: goal
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: goal
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task