DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2061

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2061

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2061 (TID: 275), and it has 477 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric343 unique values
0 missing
ATS6inumeric347 unique values
0 missing
ARRnumeric65 unique values
0 missing
SpMin7_Bh.p.numeric218 unique values
0 missing
CIC5numeric284 unique values
0 missing
SpMin2_Bh.v.numeric178 unique values
0 missing
ATSC4mnumeric447 unique values
0 missing
SpMax7_Bh.i.numeric220 unique values
0 missing
SAtotnumeric380 unique values
0 missing
ATSC8vnumeric442 unique values
0 missing
Neoplastic.80numeric2 unique values
0 missing
Spnumeric326 unique values
0 missing
Infective.80numeric2 unique values
0 missing
ATSC2mnumeric402 unique values
0 missing
Hypertens.80numeric2 unique values
0 missing
ATSC7pnumeric442 unique values
0 missing
GATS1vnumeric224 unique values
0 missing
nCbHnumeric16 unique values
0 missing
ALOGPnumeric400 unique values
0 missing
ALOGP2numeric416 unique values
0 missing
Senumeric322 unique values
0 missing
ATS8inumeric384 unique values
0 missing
ATSC5vnumeric444 unique values
0 missing
VvdwMGnumeric335 unique values
0 missing
Vxnumeric335 unique values
0 missing
ATS4enumeric350 unique values
0 missing
ATSC5pnumeric437 unique values
0 missing
Eta_betaP_Anumeric158 unique values
0 missing
PDInumeric133 unique values
0 missing
ATS2inumeric303 unique values
0 missing
Eta_FL_Anumeric128 unique values
0 missing
ATS1inumeric270 unique values
0 missing
ATS8enumeric392 unique values
0 missing
ATS1enumeric268 unique values
0 missing
Mpnumeric93 unique values
0 missing
P_VSA_m_1numeric33 unique values
0 missing
P_VSA_e_1numeric33 unique values
0 missing
nCsp3numeric19 unique values
0 missing
DBInumeric58 unique values
0 missing
SpMAD_EA.bo.numeric206 unique values
0 missing
P_VSA_i_3numeric169 unique values
0 missing
DLS_04numeric7 unique values
0 missing
P_VSA_s_2numeric75 unique values
0 missing
P_VSA_v_1numeric33 unique values
0 missing
P_VSA_LogP_7numeric59 unique values
0 missing
C.numeric94 unique values
0 missing
DLS_05numeric3 unique values
0 missing
NaaCHnumeric16 unique values
0 missing
GATS6snumeric330 unique values
0 missing
C.024numeric17 unique values
0 missing
Eta_beta_Anumeric214 unique values
0 missing
molecule_id (row identifier)nominal477 unique values
0 missing
ATSC1vnumeric344 unique values
0 missing
nHnumeric35 unique values
0 missing
P_VSA_p_1numeric83 unique values
0 missing
SsCH3numeric428 unique values
0 missing
P_VSA_LogP_3numeric52 unique values
0 missing
NsCH3numeric10 unique values
0 missing
P_VSA_LogP_1numeric37 unique values
0 missing
SpMin7_Bh.s.numeric200 unique values
0 missing
ATSC7vnumeric442 unique values
0 missing
GATS7snumeric340 unique values
0 missing
ATSC5mnumeric446 unique values
0 missing
ATS5enumeric346 unique values
0 missing
GATS6enumeric352 unique values
0 missing
ATS7inumeric362 unique values
0 missing
ATS5inumeric357 unique values
0 missing

62 properties

477
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.02
First quartile of kurtosis among attributes of the numeric type.
1.11
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.44
First quartile of skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.31
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.51
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.04
Second quartile (Median) of skewness among attributes of the numeric type.
1.37
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.96
Third quartile of kurtosis among attributes of the numeric type.
42.05
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.48
Third quartile of skewness among attributes of the numeric type.
9.61
Third quartile of standard deviation of attributes of the numeric type.
0.03
Average class difference between consecutive instances.
67.44
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.14
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
8.43
Maximum kurtosis among attributes of the numeric type.
589.55
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.22
Maximum skewness among attributes of the numeric type.
103.96
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.75
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.11
Mean skewness among attributes of the numeric type.
14.16
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.55
Minimum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.13
Minimum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task