DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5498

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5498

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5498 (TID: 100872), and it has 533 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric398 unique values
0 missing
SM10_AEA.ed.numeric309 unique values
0 missing
GGI5numeric216 unique values
0 missing
CATS2D_08_PLnumeric7 unique values
0 missing
SM13_AEA.ed.numeric290 unique values
0 missing
SM12_AEA.ed.numeric296 unique values
0 missing
X2Anumeric82 unique values
0 missing
CATS2D_05_LLnumeric28 unique values
0 missing
SM02_EA.ed.numeric250 unique values
0 missing
CATS2D_04_ALnumeric32 unique values
0 missing
SM11_AEA.ed.numeric305 unique values
0 missing
SM06_EA.ed.numeric314 unique values
0 missing
SRW10numeric322 unique values
0 missing
Rperimnumeric31 unique values
0 missing
MWC08numeric326 unique values
0 missing
SpMin1_Bh.e.numeric135 unique values
0 missing
SM05_EA.dm.numeric113 unique values
0 missing
IVDEnumeric219 unique values
0 missing
SM07_AEA.bo.numeric353 unique values
0 missing
SpDiam_EA.bo.numeric167 unique values
0 missing
piPC04numeric319 unique values
0 missing
SM13_EAnumeric300 unique values
0 missing
SpMax2_Bh.v.numeric230 unique values
0 missing
Eig05_AEA.ed.numeric285 unique values
0 missing
MPC07numeric154 unique values
0 missing
SM09_AEA.ed.numeric316 unique values
0 missing
CATS2D_02_LLnumeric36 unique values
0 missing
GATS5enumeric406 unique values
0 missing
SM13_AEA.ri.numeric213 unique values
0 missing
Eig03_EA.bo.numeric213 unique values
0 missing
MPC08numeric155 unique values
0 missing
SM05_EA.ed.numeric283 unique values
0 missing
SM03_EA.bo.numeric91 unique values
0 missing
SM14_EAnumeric328 unique values
0 missing
PW4numeric88 unique values
0 missing
SM05_EAnumeric118 unique values
0 missing
MWC10numeric334 unique values
0 missing
SpMax_EA.bo.numeric161 unique values
0 missing
SM11_AEA.ri.numeric161 unique values
0 missing
Eig01_EA.bo.numeric161 unique values
0 missing
SM06_EAnumeric320 unique values
0 missing
SM05_AEA.ed.numeric313 unique values
0 missing
NssssCnumeric3 unique values
0 missing
X5Anumeric50 unique values
0 missing
JGI3numeric71 unique values
0 missing
CATS2D_04_LLnumeric31 unique values
0 missing
GATS5snumeric415 unique values
0 missing
GGI3numeric151 unique values
0 missing
SpDiam_AEA.bo.numeric226 unique values
0 missing
SM06_AEA.ed.numeric321 unique values
0 missing
SssssCnumeric196 unique values
0 missing
SM08_EAnumeric331 unique values
0 missing
SM08_AEA.bo.numeric354 unique values
0 missing
SM07_EA.dm.numeric110 unique values
0 missing
GGI2numeric46 unique values
0 missing
Qindexnumeric41 unique values
0 missing
CATS2D_05_ALnumeric30 unique values
0 missing
X3Anumeric71 unique values
0 missing
SpMAD_EA.ri.numeric186 unique values
0 missing
CATS2D_03_LLnumeric32 unique values
0 missing
SM03_EAnumeric26 unique values
0 missing
molecule_id (row identifier)nominal533 unique values
0 missing
X4Anumeric61 unique values
0 missing
MAXDNnumeric383 unique values
0 missing
NRSnumeric6 unique values
0 missing
SpMin1_Bh.i.numeric143 unique values
0 missing
SM03_EA.ri.numeric233 unique values
0 missing
TWCnumeric333 unique values
0 missing
MWC09numeric323 unique values
0 missing

62 properties

533
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.64
First quartile of kurtosis among attributes of the numeric type.
1.98
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.71
First quartile of skewness among attributes of the numeric type.
0.4
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.51
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.89
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.58
Second quartile (Median) of skewness among attributes of the numeric type.
0.54
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.69
Third quartile of kurtosis among attributes of the numeric type.
11.5
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.23
Third quartile of skewness among attributes of the numeric type.
1.25
Third quartile of standard deviation of attributes of the numeric type.
-0.13
Average class difference between consecutive instances.
7.42
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.13
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
13.53
Maximum kurtosis among attributes of the numeric type.
26.07
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.8
Maximum skewness among attributes of the numeric type.
7.7
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.8
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.2
Mean skewness among attributes of the numeric type.
1.36
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.43
Minimum kurtosis among attributes of the numeric type.
-0.5
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.07
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task