DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3564

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3564

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3564 (TID: 10454), and it has 89 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric37 unique values
0 missing
MATS7mnumeric65 unique values
0 missing
PCDnumeric62 unique values
0 missing
SpMaxA_EA.dm.numeric38 unique values
0 missing
piPC04numeric57 unique values
0 missing
Eig02_AEA.ed.numeric40 unique values
0 missing
MWC10numeric66 unique values
0 missing
Eig02_AEA.ri.numeric57 unique values
0 missing
SpMax1_Bh.m.numeric46 unique values
0 missing
TPCnumeric51 unique values
0 missing
SM05_EA.bo.numeric54 unique values
0 missing
Eig02_EA.ri.numeric56 unique values
0 missing
SpMin2_Bh.v.numeric55 unique values
0 missing
SpMin2_Bh.p.numeric48 unique values
0 missing
SM06_EA.bo.numeric67 unique values
0 missing
SM03_EA.bo.numeric33 unique values
0 missing
CATS2D_02_ALnumeric10 unique values
0 missing
Eig01_EA.bo.numeric31 unique values
0 missing
SM11_AEA.ri.numeric31 unique values
0 missing
SpDiam_EA.bo.numeric31 unique values
0 missing
SpMax_EA.bo.numeric31 unique values
0 missing
Eig03_AEA.bo.numeric55 unique values
0 missing
SpMax1_Bh.i.numeric43 unique values
0 missing
SpMax1_Bh.p.numeric42 unique values
0 missing
X3Anumeric35 unique values
0 missing
MWC04numeric63 unique values
0 missing
Eig13_AEA.dm.numeric57 unique values
0 missing
Eig15_AEA.dm.numeric62 unique values
0 missing
PDInumeric47 unique values
0 missing
Eig02_EAnumeric58 unique values
0 missing
SM10_AEA.bo.numeric58 unique values
0 missing
MPC05numeric45 unique values
0 missing
SM07_EA.bo.numeric57 unique values
0 missing
MPC07numeric51 unique values
0 missing
MPC09numeric58 unique values
0 missing
MPC10numeric67 unique values
0 missing
X5numeric70 unique values
0 missing
X5solnumeric71 unique values
0 missing
Eig02_EA.ed.numeric44 unique values
0 missing
SM11_AEA.dm.numeric44 unique values
0 missing
MPC06numeric51 unique values
0 missing
MPC08numeric59 unique values
0 missing
piPC05numeric59 unique values
0 missing
piPC06numeric64 unique values
0 missing
piPC07numeric65 unique values
0 missing
piPC08numeric74 unique values
0 missing
piPC09numeric73 unique values
0 missing
piPC10numeric82 unique values
0 missing
molecule_id (row identifier)nominal89 unique values
0 missing
SM08_EA.bo.numeric60 unique values
0 missing
SM09_EA.bo.numeric57 unique values
0 missing
SM10_EA.bo.numeric62 unique values
0 missing
SM11_EA.bo.numeric60 unique values
0 missing
SM12_EA.bo.numeric59 unique values
0 missing
SM13_EA.bo.numeric58 unique values
0 missing
SM14_EA.bo.numeric55 unique values
0 missing
SM15_EA.bo.numeric54 unique values
0 missing
SpMax1_Bh.e.numeric47 unique values
0 missing
SpMax1_Bh.v.numeric42 unique values
0 missing
Eig02_AEA.bo.numeric40 unique values
0 missing
Eta_betaS_Anumeric38 unique values
0 missing
Psi_e_Anumeric58 unique values
0 missing
Psi_i_Anumeric58 unique values
0 missing
P_VSA_LogP_5numeric36 unique values
0 missing

62 properties

89
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.44
Percentage of numeric attributes.
1.56
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.51
First quartile of kurtosis among attributes of the numeric type.
3.99
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.16
First quartile of skewness among attributes of the numeric type.
0.19
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.98
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.42
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.59
Second quartile (Median) of skewness among attributes of the numeric type.
0.4
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.27
Third quartile of kurtosis among attributes of the numeric type.
8.54
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.78
Third quartile of skewness among attributes of the numeric type.
0.82
Third quartile of standard deviation of attributes of the numeric type.
0.59
Average class difference between consecutive instances.
7.13
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.72
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
32.78
Maximum kurtosis among attributes of the numeric type.
31.1
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.58
Maximum skewness among attributes of the numeric type.
17.11
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.48
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.53
Mean skewness among attributes of the numeric type.
0.83
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.11
Minimum kurtosis among attributes of the numeric type.
0.02
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.13
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task