DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4768

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4768

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4768 (TID: 17066), and it has 437 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric310 unique values
0 missing
Rbridnumeric10 unique values
0 missing
SM04_EA.dm.numeric147 unique values
0 missing
SpMAD_EA.dm.numeric238 unique values
0 missing
Eig02_AEA.ed.numeric175 unique values
0 missing
SM06_AEA.bo.numeric319 unique values
0 missing
SM10_AEA.bo.numeric204 unique values
0 missing
Eig02_EAnumeric204 unique values
0 missing
Eig02_AEA.ri.numeric218 unique values
0 missing
SM04_EA.ri.numeric321 unique values
0 missing
nCrsnumeric13 unique values
0 missing
SpMin1_Bh.p.numeric136 unique values
0 missing
Yindexnumeric272 unique values
0 missing
Vindexnumeric194 unique values
0 missing
ATSC4vnumeric410 unique values
0 missing
NaaaCnumeric4 unique values
0 missing
CATS2D_01_LLnumeric28 unique values
0 missing
PCRnumeric229 unique values
0 missing
MPC06numeric166 unique values
0 missing
CATS2D_05_LLnumeric34 unique values
0 missing
SpAD_EA.bo.numeric384 unique values
0 missing
C.002numeric17 unique values
0 missing
ATSC5inumeric394 unique values
0 missing
Eig13_EA.ed.numeric291 unique values
0 missing
SM08_AEA.ri.numeric291 unique values
0 missing
piPC01numeric91 unique values
0 missing
SCBOnumeric91 unique values
0 missing
Eta_betanumeric153 unique values
0 missing
SpAD_EA.dm.numeric148 unique values
0 missing
Eig13_AEA.ri.numeric279 unique values
0 missing
Eig15_EAnumeric272 unique values
0 missing
SM09_AEA.dm.numeric272 unique values
0 missing
Eig15_AEA.ri.numeric300 unique values
0 missing
Eig15_EA.ri.numeric302 unique values
0 missing
SaaaCnumeric203 unique values
0 missing
piPC07numeric336 unique values
0 missing
SM02_EA.dm.numeric141 unique values
0 missing
piPC08numeric323 unique values
0 missing
C.025numeric9 unique values
0 missing
NaaNnumeric4 unique values
0 missing
SM08_EA.bo.numeric288 unique values
0 missing
SpMin2_Bh.e.numeric178 unique values
0 missing
SpMin2_Bh.i.numeric162 unique values
0 missing
piPC09numeric329 unique values
0 missing
BIC0numeric133 unique values
0 missing
piPC06numeric342 unique values
0 missing
piPC04numeric311 unique values
0 missing
SM06_EA.bo.numeric310 unique values
0 missing
piPC05numeric339 unique values
0 missing
nPyridinesnumeric4 unique values
0 missing
C.028numeric5 unique values
0 missing
N.075numeric4 unique values
0 missing
SM12_EA.bo.numeric272 unique values
0 missing
SpMax1_Bh.v.numeric168 unique values
0 missing
SM03_EA.bo.numeric96 unique values
0 missing
SpDiam_EA.dm.numeric57 unique values
0 missing
SM15_EA.bo.numeric267 unique values
0 missing
SM14_EA.bo.numeric266 unique values
0 missing
SM13_EA.bo.numeric268 unique values
0 missing
SM11_EA.bo.numeric270 unique values
0 missing
molecule_id (row identifier)nominal437 unique values
0 missing
PCDnumeric334 unique values
0 missing
SM13_AEA.ri.numeric217 unique values
0 missing
Eig03_EA.bo.numeric217 unique values
0 missing
SIC0numeric140 unique values
0 missing
piPC10numeric336 unique values
0 missing
SM07_AEA.bo.numeric324 unique values
0 missing
SM05_EA.bo.numeric236 unique values
0 missing

62 properties

437
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.66
First quartile of kurtosis among attributes of the numeric type.
1.39
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.96
First quartile of skewness among attributes of the numeric type.
0.38
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.37
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.39
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.31
Second quartile (Median) of skewness among attributes of the numeric type.
0.91
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.48
Third quartile of kurtosis among attributes of the numeric type.
7
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.41
Third quartile of skewness among attributes of the numeric type.
1.68
Third quartile of standard deviation of attributes of the numeric type.
-0.19
Average class difference between consecutive instances.
7.26
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.16
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
255.89
Maximum kurtosis among attributes of the numeric type.
63.35
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
14.5
Maximum skewness among attributes of the numeric type.
20.33
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
4.97
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.17
Mean skewness among attributes of the numeric type.
1.96
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.37
Minimum kurtosis among attributes of the numeric type.
0.09
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.5
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task