DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2830

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2830

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2830 (TID: 17056), and it has 105 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric79 unique values
0 missing
SIC5numeric55 unique values
0 missing
ATS4mnumeric94 unique values
0 missing
GGI3numeric46 unique values
0 missing
ZM2Kupnumeric98 unique values
0 missing
ATSC7snumeric102 unique values
0 missing
SIC4numeric60 unique values
0 missing
CIC3numeric82 unique values
0 missing
ZM1Vnumeric73 unique values
0 missing
ZM1Pernumeric101 unique values
0 missing
ZM1MulPernumeric101 unique values
0 missing
ZM1Kupnumeric85 unique values
0 missing
Psi_i_snumeric83 unique values
0 missing
SsOHnumeric78 unique values
0 missing
O.numeric58 unique values
0 missing
CATS2D_04_DLnumeric7 unique values
0 missing
SM13_AEA.ri.numeric65 unique values
0 missing
ATSC1enumeric73 unique values
0 missing
ATSC4enumeric98 unique values
0 missing
Eig04_EA.dm.numeric12 unique values
0 missing
nHAccnumeric11 unique values
0 missing
P_VSA_m_3numeric29 unique values
0 missing
P_VSA_v_2numeric35 unique values
0 missing
SpMax3_Bh.s.numeric32 unique values
0 missing
SpMax5_Bh.s.numeric67 unique values
0 missing
ATS2snumeric99 unique values
0 missing
ATSC1snumeric101 unique values
0 missing
ATSC2snumeric102 unique values
0 missing
SpMax6_Bh.s.numeric66 unique values
0 missing
TPSA.Tot.numeric33 unique values
0 missing
ATSC6snumeric102 unique values
0 missing
BIC2numeric75 unique values
0 missing
SpMax8_Bh.s.numeric67 unique values
0 missing
SpMax7_Bh.s.numeric58 unique values
0 missing
ATS6snumeric97 unique values
0 missing
ATS7snumeric95 unique values
0 missing
TIEnumeric102 unique values
0 missing
GGI5numeric67 unique values
0 missing
BACnumeric48 unique values
0 missing
ATSC8enumeric98 unique values
0 missing
ATSC8snumeric102 unique values
0 missing
ATS5mnumeric96 unique values
0 missing
ATS4snumeric94 unique values
0 missing
DELSnumeric102 unique values
0 missing
Eig05_EA.dm.numeric17 unique values
0 missing
P_VSA_s_6numeric42 unique values
0 missing
SAaccnumeric35 unique values
0 missing
SPInumeric89 unique values
0 missing
molecule_id (row identifier)nominal105 unique values
0 missing
ATS6mnumeric95 unique values
0 missing
ATSC2enumeric87 unique values
0 missing
Eig05_AEA.dm.numeric77 unique values
0 missing
ATSC7enumeric96 unique values
0 missing
CATS2D_04_AAnumeric7 unique values
0 missing
GGI6numeric71 unique values
0 missing
IC1numeric88 unique values
0 missing
ATSC6enumeric97 unique values
0 missing
CATS2D_06_DAnumeric4 unique values
0 missing
Eig03_AEA.bo.numeric56 unique values
0 missing
Eig03_AEA.ri.numeric52 unique values
0 missing
Eig03_EAnumeric51 unique values
0 missing
Eig03_EA.bo.numeric65 unique values
0 missing
P_VSA_LogP_4numeric25 unique values
0 missing
SM11_AEA.bo.numeric51 unique values
0 missing

62 properties

105
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.44
Percentage of numeric attributes.
1.56
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.37
First quartile of kurtosis among attributes of the numeric type.
2.71
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.66
First quartile of skewness among attributes of the numeric type.
0.29
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.09
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.02
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.08
Second quartile (Median) of skewness among attributes of the numeric type.
0.9
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.57
Third quartile of kurtosis among attributes of the numeric type.
81.08
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.47
Third quartile of skewness among attributes of the numeric type.
32.77
Third quartile of standard deviation of attributes of the numeric type.
0.15
Average class difference between consecutive instances.
74.65
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.61
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
7.83
Maximum kurtosis among attributes of the numeric type.
719.2
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.87
Maximum skewness among attributes of the numeric type.
176.95
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.32
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.03
Mean skewness among attributes of the numeric type.
23.34
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.26
Minimum kurtosis among attributes of the numeric type.
0.2
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.61
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task