DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2626

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2626

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2626 (TID: 10075), and it has 161 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric113 unique values
0 missing
BBInumeric31 unique values
0 missing
Eig07_AEA.ed.numeric98 unique values
0 missing
Eig12_AEA.ed.numeric67 unique values
0 missing
MPC07numeric42 unique values
0 missing
SM03_AEA.bo.numeric94 unique values
0 missing
ZM2Madnumeric132 unique values
0 missing
nCqnumeric3 unique values
0 missing
C.004numeric3 unique values
0 missing
SpMax2_Bh.v.numeric112 unique values
0 missing
ZM2numeric72 unique values
0 missing
MWC03numeric72 unique values
0 missing
SM04_EA.bo.numeric100 unique values
0 missing
Eig08_AEA.ed.numeric88 unique values
0 missing
SpMax2_Bh.p.numeric118 unique values
0 missing
SM06_EA.bo.numeric115 unique values
0 missing
SpMax1_Bh.p.numeric81 unique values
0 missing
nCrqnumeric3 unique values
0 missing
MPC02numeric31 unique values
0 missing
SM02_EAnumeric31 unique values
0 missing
GGI1numeric13 unique values
0 missing
Eig11_AEA.ed.numeric81 unique values
0 missing
Eig01_EA.bo.numeric48 unique values
0 missing
SM11_AEA.ri.numeric48 unique values
0 missing
SpMax_EA.bo.numeric48 unique values
0 missing
Eig13_AEA.ed.numeric52 unique values
0 missing
Eig04_AEA.dm.numeric87 unique values
0 missing
Eig09_AEA.ed.numeric78 unique values
0 missing
SM14_EA.ed.numeric61 unique values
0 missing
SM15_EA.ed.numeric58 unique values
0 missing
C.003numeric4 unique values
0 missing
nCtnumeric4 unique values
0 missing
NsssCHnumeric4 unique values
0 missing
SpMax2_Bh.m.numeric104 unique values
0 missing
MWC06numeric99 unique values
0 missing
SM05_AEA.bo.numeric119 unique values
0 missing
SM04_AEA.bo.numeric112 unique values
0 missing
SM03_AEA.ed.numeric100 unique values
0 missing
SM02_EA.ed.numeric86 unique values
0 missing
MWC10numeric100 unique values
0 missing
MWC09numeric103 unique values
0 missing
MWC08numeric102 unique values
0 missing
MWC07numeric102 unique values
0 missing
TWCnumeric96 unique values
0 missing
SRW05numeric10 unique values
0 missing
SpDiam_AEA.ri.numeric90 unique values
0 missing
SM06_AEA.bo.numeric117 unique values
0 missing
SM04_EAnumeric79 unique values
0 missing
D.Dtr03numeric62 unique values
0 missing
SpDiam_EAnumeric72 unique values
0 missing
SpDiam_AEA.bo.numeric65 unique values
0 missing
molecule_id (row identifier)nominal161 unique values
0 missing
SpDiam_AEA.ed.numeric90 unique values
0 missing
MWC05numeric99 unique values
0 missing
SRW08numeric103 unique values
0 missing
SRW10numeric104 unique values
0 missing
MWC04numeric87 unique values
0 missing
nR03numeric3 unique values
0 missing
SpMax1_Bh.e.numeric78 unique values
0 missing
SRW03numeric3 unique values
0 missing
GGI2numeric24 unique values
0 missing
SM02_AEA.ed.numeric73 unique values
0 missing
SRW06numeric91 unique values
0 missing
Eta_sh_xnumeric42 unique values
0 missing
IVDEnumeric65 unique values
0 missing
NssssCnumeric3 unique values
0 missing
SpAD_EA.ed.numeric106 unique values
0 missing

62 properties

161
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.58
First quartile of kurtosis among attributes of the numeric type.
2.61
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.74
First quartile of skewness among attributes of the numeric type.
0.31
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.12
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.27
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.32
Second quartile (Median) of skewness among attributes of the numeric type.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.87
Third quartile of kurtosis among attributes of the numeric type.
8.02
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.34
Third quartile of skewness among attributes of the numeric type.
0.71
Third quartile of standard deviation of attributes of the numeric type.
-0.12
Average class difference between consecutive instances.
10.56
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.42
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
60.01
Maximum kurtosis among attributes of the numeric type.
114.68
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
7.35
Maximum skewness among attributes of the numeric type.
36.11
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.47
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.08
Mean skewness among attributes of the numeric type.
2.33
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.53
Minimum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.3
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task