DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2575

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2575

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2575 (TID: 10095), and it has 219 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric169 unique values
0 missing
nRNH2numeric3 unique values
0 missing
P_VSA_MR_2numeric47 unique values
0 missing
N.066numeric3 unique values
0 missing
NsssNnumeric3 unique values
0 missing
nArNR2numeric2 unique values
0 missing
N.071numeric2 unique values
0 missing
nNnumeric9 unique values
0 missing
SsssNnumeric102 unique values
0 missing
SM15_AEA.ed.numeric109 unique values
0 missing
SM12_EAnumeric121 unique values
0 missing
SpDiam_AEA.bo.numeric124 unique values
0 missing
SM05_EA.ri.numeric121 unique values
0 missing
SM13_EAnumeric111 unique values
0 missing
SM15_EA.ri.numeric162 unique values
0 missing
SM14_AEA.ed.numeric108 unique values
0 missing
SM04_AEA.ed.numeric130 unique values
0 missing
SM11_EAnumeric111 unique values
0 missing
C.041numeric4 unique values
0 missing
SM14_EAnumeric120 unique values
0 missing
SM07_EA.ed.numeric107 unique values
0 missing
SM08_EA.ed.numeric113 unique values
0 missing
SM03_EA.dm.numeric24 unique values
0 missing
SM05_EA.dm.numeric26 unique values
0 missing
SM07_EA.dm.numeric26 unique values
0 missing
SM09_EA.dm.numeric24 unique values
0 missing
SM11_EA.dm.numeric24 unique values
0 missing
SM13_EA.dm.numeric24 unique values
0 missing
SM15_EA.dm.numeric23 unique values
0 missing
Eig04_AEA.dm.numeric145 unique values
0 missing
Eig04_EA.dm.numeric18 unique values
0 missing
SM06_EA.ri.numeric194 unique values
0 missing
CATS2D_04_DLnumeric10 unique values
0 missing
SM09_EA.ed.numeric100 unique values
0 missing
SM08_EA.ri.numeric192 unique values
0 missing
SM09_AEA.ed.numeric128 unique values
0 missing
SM08_EAnumeric131 unique values
0 missing
SM07_EAnumeric95 unique values
0 missing
SM05_AEA.ed.numeric137 unique values
0 missing
CATS2D_04_APnumeric4 unique values
0 missing
SM11_EA.ri.numeric174 unique values
0 missing
SM10_EA.ri.numeric195 unique values
0 missing
SM09_EA.ri.numeric165 unique values
0 missing
SM10_AEA.ed.numeric126 unique values
0 missing
SM07_EA.ri.numeric166 unique values
0 missing
SM08_AEA.ed.numeric135 unique values
0 missing
SM07_AEA.ed.numeric133 unique values
0 missing
SM04_EA.ed.numeric139 unique values
0 missing
SM03_EA.ed.numeric64 unique values
0 missing
CATS2D_04_DAnumeric5 unique values
0 missing
SM06_AEA.ed.numeric136 unique values
0 missing
SM13_AEA.ed.numeric114 unique values
0 missing
SM10_EAnumeric132 unique values
0 missing
SM09_EAnumeric109 unique values
0 missing
CATS2D_02_DAnumeric8 unique values
0 missing
NdssCnumeric6 unique values
0 missing
SM05_EA.ed.numeric103 unique values
0 missing
SM14_EA.ri.numeric185 unique values
0 missing
SM13_EA.ri.numeric173 unique values
0 missing
SM12_EA.ri.numeric189 unique values
0 missing
molecule_id (row identifier)nominal219 unique values
0 missing
SM12_AEA.ed.numeric116 unique values
0 missing
SM06_EA.ed.numeric124 unique values
0 missing
P_VSA_MR_5numeric83 unique values
0 missing
SM05_EAnumeric52 unique values
0 missing
nCconjnumeric7 unique values
0 missing
GGI3numeric46 unique values
0 missing
SM11_AEA.ed.numeric119 unique values
0 missing

62 properties

219
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.06
First quartile of kurtosis among attributes of the numeric type.
2.6
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.31
First quartile of skewness among attributes of the numeric type.
0.54
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.8
Second quartile (Median) of kurtosis among attributes of the numeric type.
9.5
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.27
Second quartile (Median) of skewness among attributes of the numeric type.
0.86
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0.17
Third quartile of kurtosis among attributes of the numeric type.
15.57
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
-0.01
Third quartile of skewness among attributes of the numeric type.
1.18
Third quartile of standard deviation of attributes of the numeric type.
0
Average class difference between consecutive instances.
11.64
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.31
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
4.81
Maximum kurtosis among attributes of the numeric type.
81.15
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.25
Maximum skewness among attributes of the numeric type.
54.28
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.32
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0
Mean skewness among attributes of the numeric type.
2.54
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0.35
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.38
Minimum skewness among attributes of the numeric type.
0.21
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task