DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5932

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5932

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5932 (TID: 101386), and it has 148 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric76 unique values
0 missing
nNnumeric10 unique values
0 missing
P_VSA_i_4numeric86 unique values
0 missing
PCDnumeric121 unique values
0 missing
JGI4numeric27 unique values
0 missing
StsCnumeric27 unique values
0 missing
NtsCnumeric3 unique values
0 missing
nTBnumeric3 unique values
0 missing
nCspnumeric3 unique values
0 missing
MATS7mnumeric122 unique values
0 missing
nBnznumeric5 unique values
0 missing
SpMin1_Bh.i.numeric88 unique values
0 missing
nCarnumeric17 unique values
0 missing
MATS1vnumeric75 unique values
0 missing
P_VSA_s_5numeric30 unique values
0 missing
MATS2inumeric126 unique values
0 missing
C.030numeric2 unique values
0 missing
SpDiam_AEA.bo.numeric103 unique values
0 missing
SsssNnumeric84 unique values
0 missing
nABnumeric18 unique values
0 missing
CATS2D_09_AAnumeric5 unique values
0 missing
CATS2D_05_AAnumeric7 unique values
0 missing
MATS5mnumeric125 unique values
0 missing
P_VSA_MR_5numeric126 unique values
0 missing
SM03_EA.dm.numeric24 unique values
0 missing
SM09_EA.dm.numeric29 unique values
0 missing
IC1numeric129 unique values
0 missing
MATS3inumeric125 unique values
0 missing
MATS6pnumeric123 unique values
0 missing
Eig02_AEA.dm.numeric115 unique values
0 missing
nCbHnumeric12 unique values
0 missing
nPyrimidinesnumeric2 unique values
0 missing
C.043numeric2 unique values
0 missing
nPyrrolesnumeric3 unique values
0 missing
CATS2D_07_DAnumeric6 unique values
0 missing
Eta_betaS_Anumeric65 unique values
0 missing
CATS2D_09_DDnumeric3 unique values
0 missing
CATS2D_04_LLnumeric18 unique values
0 missing
NdsNnumeric3 unique values
0 missing
nArNR2numeric2 unique values
0 missing
N.071numeric2 unique values
0 missing
GATS1inumeric124 unique values
0 missing
CATS2D_09_DAnumeric5 unique values
0 missing
GATS3inumeric118 unique values
0 missing
CATS2D_02_AAnumeric7 unique values
0 missing
CATS2D_05_LLnumeric18 unique values
0 missing
N.074numeric4 unique values
0 missing
MATS1inumeric121 unique values
0 missing
P_VSA_e_3numeric82 unique values
0 missing
nC..N.N2numeric2 unique values
0 missing
C.041numeric3 unique values
0 missing
molecule_id (row identifier)nominal148 unique values
0 missing
StNnumeric24 unique values
0 missing
CATS2D_07_AAnumeric8 unique values
0 missing
N.numeric75 unique values
0 missing
NsssNnumeric4 unique values
0 missing
MATS6vnumeric122 unique values
0 missing
CATS2D_03_LLnumeric17 unique values
0 missing
MATS5inumeric114 unique values
0 missing
CATS2D_02_DAnumeric7 unique values
0 missing
GATS2snumeric132 unique values
0 missing
NtNnumeric3 unique values
0 missing
MATS2enumeric122 unique values
0 missing
SM05_EA.dm.numeric32 unique values
0 missing
SM07_EA.dm.numeric33 unique values
0 missing
MATS7enumeric125 unique values
0 missing
MATS6inumeric121 unique values
0 missing

62 properties

148
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.62
First quartile of kurtosis among attributes of the numeric type.
0.19
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.16
First quartile of skewness among attributes of the numeric type.
0.14
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.14
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.04
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.57
Second quartile (Median) of skewness among attributes of the numeric type.
0.51
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.67
Third quartile of kurtosis among attributes of the numeric type.
3.4
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.18
Third quartile of skewness among attributes of the numeric type.
1.6
Third quartile of standard deviation of attributes of the numeric type.
0.28
Average class difference between consecutive instances.
6.44
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.45
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
7.97
Maximum kurtosis among attributes of the numeric type.
92.38
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.54
Maximum skewness among attributes of the numeric type.
34.41
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.64
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.7
Mean skewness among attributes of the numeric type.
2.72
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.9
Minimum kurtosis among attributes of the numeric type.
-0.19
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.73
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task