DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4822

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4822

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4822 (TID: 12252), and it has 2998 rows and 71 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

73 features

pXC50 (target)numeric1232 unique values
0 missing
SM04_AEA.bo.numeric833 unique values
0 missing
Eig01_AEA.ed.numeric597 unique values
0 missing
SM04_AEA.ed.numeric852 unique values
0 missing
MWC09numeric900 unique values
0 missing
SM08_EAnumeric1148 unique values
0 missing
MWC10numeric946 unique values
0 missing
SM06_AEA.bo.numeric873 unique values
0 missing
ATSC3inumeric1586 unique values
0 missing
SM03_EA.ed.numeric680 unique values
0 missing
nR04numeric2 unique values
0 missing
MWC04numeric542 unique values
0 missing
ATS4snumeric1247 unique values
0 missing
TWCnumeric923 unique values
0 missing
SM13_EA.ed.numeric1488 unique values
0 missing
GGI2numeric84 unique values
0 missing
MWC05numeric809 unique values
0 missing
SpMax_AEA.ed.numeric597 unique values
0 missing
MWC08numeric868 unique values
0 missing
SM07_AEA.bo.numeric915 unique values
0 missing
SM03_AEA.ed.numeric804 unique values
0 missing
Eig04_AEA.ri.numeric740 unique values
0 missing
Eig03_AEA.ed.numeric742 unique values
0 missing
ATSC8snumeric2786 unique values
0 missing
ATS7snumeric1468 unique values
0 missing
ATS3vnumeric976 unique values
0 missing
SM08_EA.ri.numeric1247 unique values
0 missing
N.072numeric14 unique values
0 missing
SM05_AEA.bo.numeric849 unique values
0 missing
SpMax_EA.ri.numeric636 unique values
0 missing
Eig01_EA.ri.numeric636 unique values
0 missing
SM07_AEA.ed.numeric1123 unique values
0 missing
Eig04_AEA.bo.numeric625 unique values
0 missing
SM07_EA.ri.numeric1172 unique values
0 missing
Eta_betanumeric227 unique values
0 missing
IC2numeric1190 unique values
0 missing
GGI8numeric885 unique values
0 missing
SM13_AEA.ri.numeric719 unique values
0 missing
GGI6numeric1066 unique values
0 missing
C.040numeric18 unique values
0 missing
SM05_EAnumeric169 unique values
0 missing
BACnumeric345 unique values
0 missing
SM05_AEA.ed.numeric940 unique values
0 missing
SM09_EAnumeric1248 unique values
0 missing
SM09_EA.ri.numeric1379 unique values
0 missing
ATSC4snumeric2786 unique values
0 missing
IC3numeric1152 unique values
0 missing
Eig03_EA.bo.numeric719 unique values
0 missing
Eig05_AEA.ed.numeric961 unique values
0 missing
IVDEnumeric541 unique values
0 missing
SpMax_EA.ed.numeric854 unique values
0 missing
SM10_AEA.dm.numeric854 unique values
0 missing
Eig01_EA.ed.numeric854 unique values
0 missing
GGI3numeric394 unique values
0 missing
SsFnumeric1007 unique values
0 missing
SM03_EA.bo.numeric166 unique values
0 missing
SM13_EAnumeric1478 unique values
0 missing
Eig07_AEA.bo.numeric932 unique values
0 missing
MWC06numeric820 unique values
0 missing
SM02_EAnumeric92 unique values
0 missing
MPC02numeric92 unique values
0 missing
BBInumeric92 unique values
0 missing
SRW08numeric815 unique values
0 missing
SM07_EAnumeric895 unique values
0 missing
molecule_id (row identifier)nominal2998 unique values
0 missing
SM06_AEA.ed.numeric1021 unique values
0 missing
SM03_EAnumeric33 unique values
0 missing
D.Dtr04numeric75 unique values
0 missing
Qindexnumeric42 unique values
0 missing
SM03_EA.ri.numeric881 unique values
0 missing
SM06_EAnumeric939 unique values
0 missing
SM04_EA.bo.numeric906 unique values
0 missing
SM08_AEA.bo.numeric967 unique values
0 missing

62 properties

2998
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.63
Percentage of numeric attributes.
1.37
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.97
First quartile of kurtosis among attributes of the numeric type.
4.34
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.67
First quartile of skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
2.6
Second quartile (Median) of kurtosis among attributes of the numeric type.
7.71
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.36
Second quartile (Median) of skewness among attributes of the numeric type.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
6.01
Third quartile of kurtosis among attributes of the numeric type.
11.51
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.51
Third quartile of skewness among attributes of the numeric type.
0.76
Third quartile of standard deviation of attributes of the numeric type.
0.13
Average class difference between consecutive instances.
14.4
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.02
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
148.14
Maximum kurtosis among attributes of the numeric type.
174.99
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
10.26
Maximum skewness among attributes of the numeric type.
182.75
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
7.58
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.38
Mean skewness among attributes of the numeric type.
7.61
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.87
Minimum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.37
Minimum skewness among attributes of the numeric type.
0.17
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task