DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741180

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741180

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1741180 (TID: 103976), and it has 754 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric413 unique values
0 missing
N.067numeric3 unique values
0 missing
X2vnumeric680 unique values
0 missing
ATSC4mnumeric739 unique values
0 missing
nCconjnumeric10 unique values
0 missing
P_VSA_i_4numeric240 unique values
0 missing
Eig05_AEA.dm.numeric569 unique values
0 missing
NdsCHnumeric6 unique values
0 missing
ATSC3inumeric546 unique values
0 missing
ATS3mnumeric528 unique values
0 missing
nHetnumeric14 unique values
0 missing
ZM2MulPernumeric737 unique values
0 missing
nDBnumeric9 unique values
0 missing
IC1numeric553 unique values
0 missing
ATSC4inumeric561 unique values
0 missing
SdsCHnumeric222 unique values
0 missing
SpMax_AEA.dm.numeric472 unique values
0 missing
Eig01_AEA.dm.numeric472 unique values
0 missing
SpDiam_AEA.dm.numeric478 unique values
0 missing
ATS1inumeric477 unique values
0 missing
ATS2vnumeric491 unique values
0 missing
ATS2snumeric517 unique values
0 missing
ATS2pnumeric487 unique values
0 missing
ATS2inumeric522 unique values
0 missing
ATS2enumeric504 unique values
0 missing
ATS1vnumeric470 unique values
0 missing
ATS1snumeric455 unique values
0 missing
ATS1pnumeric483 unique values
0 missing
AACnumeric418 unique values
0 missing
ATS1enumeric485 unique values
0 missing
ARRnumeric147 unique values
0 missing
AMWnumeric631 unique values
0 missing
AMRnumeric734 unique values
0 missing
ALOGP2numeric714 unique values
0 missing
ALOGPnumeric660 unique values
0 missing
AECCnumeric514 unique values
0 missing
SM10_AEA.bo.numeric418 unique values
0 missing
Eig08_AEA.dm.numeric523 unique values
0 missing
Eig02_AEA.ri.numeric426 unique values
0 missing
SM09_EA.bo.numeric625 unique values
0 missing
SddssSnumeric80 unique values
0 missing
S.110numeric3 unique values
0 missing
NddssSnumeric3 unique values
0 missing
P_VSA_s_1numeric7 unique values
0 missing
ATS1mnumeric469 unique values
0 missing
SM10_EA.bo.numeric633 unique values
0 missing
Eig02_EAnumeric418 unique values
0 missing
SpMax_AEA.bo.numeric446 unique values
0 missing
Eig01_AEA.bo.numeric446 unique values
0 missing
C.019numeric5 unique values
0 missing
Eig02_AEA.dm.numeric515 unique values
0 missing
SpDiam_AEA.bo.numeric477 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
nR.Csnumeric6 unique values
0 missing
SM05_EA.bo.numeric555 unique values
0 missing
MATS1mnumeric185 unique values
0 missing
SpDiam_EA.dm.numeric183 unique values
0 missing
ZM2Madnumeric740 unique values
0 missing
X3vnumeric691 unique values
0 missing
SM11_EA.bo.numeric653 unique values
0 missing
SM08_EA.bo.numeric603 unique values
0 missing
Eig09_AEA.dm.numeric499 unique values
0 missing
ZM1Madnumeric736 unique values
0 missing
molecule_id (row identifier)nominal754 unique values
0 missing
CATS2D_04_AAnumeric9 unique values
0 missing
Eig02_AEA.bo.numeric420 unique values
0 missing
SM07_EA.bo.numeric604 unique values
0 missing
SM03_EA.bo.numeric104 unique values
0 missing
ATS2mnumeric491 unique values
0 missing
nN.C.N.numeric3 unique values
0 missing
MAXDNnumeric630 unique values
0 missing

62 properties

754
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.02
First quartile of kurtosis among attributes of the numeric type.
1.31
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.02
First quartile of skewness among attributes of the numeric type.
0.23
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.72
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.76
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.47
Second quartile (Median) of skewness among attributes of the numeric type.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.99
Third quartile of kurtosis among attributes of the numeric type.
5.96
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.38
Third quartile of skewness among attributes of the numeric type.
1.34
Third quartile of standard deviation of attributes of the numeric type.
0.59
Average class difference between consecutive instances.
16.05
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.09
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
59.24
Maximum kurtosis among attributes of the numeric type.
382.79
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
6.1
Maximum skewness among attributes of the numeric type.
86.16
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.96
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.8
Mean skewness among attributes of the numeric type.
3.88
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.76
Minimum kurtosis among attributes of the numeric type.
-0.43
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.09
Minimum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task