DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL290

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL290

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL290 (TID: 11395), and it has 104 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric84 unique values
0 missing
nHDonnumeric5 unique values
0 missing
SpMin4_Bh.s.numeric55 unique values
0 missing
Hynumeric55 unique values
0 missing
H.050numeric5 unique values
0 missing
C.006numeric9 unique values
0 missing
MATS5pnumeric77 unique values
0 missing
SpMax3_Bh.s.numeric51 unique values
0 missing
SM15_EA.dm.numeric23 unique values
0 missing
SM13_EA.dm.numeric23 unique values
0 missing
SM11_EA.dm.numeric23 unique values
0 missing
SM09_EA.dm.numeric24 unique values
0 missing
SM07_EA.dm.numeric25 unique values
0 missing
SM05_EA.dm.numeric23 unique values
0 missing
SpMin4_Bh.m.numeric64 unique values
0 missing
SdssCnumeric62 unique values
0 missing
CATS2D_07_DLnumeric6 unique values
0 missing
GATS1pnumeric72 unique values
0 missing
N.071numeric2 unique values
0 missing
nArNR2numeric2 unique values
0 missing
NRSnumeric4 unique values
0 missing
CATS2D_07_AAnumeric4 unique values
0 missing
GATS5vnumeric86 unique values
0 missing
MATS5vnumeric84 unique values
0 missing
Eig02_AEA.ri.numeric80 unique values
0 missing
CATS2D_02_ALnumeric12 unique values
0 missing
Eta_betaS_Anumeric48 unique values
0 missing
CATS2D_01_LLnumeric19 unique values
0 missing
Eig11_AEA.ri.numeric72 unique values
0 missing
N.074numeric4 unique values
0 missing
C.002numeric8 unique values
0 missing
CATS2D_06_AAnumeric8 unique values
0 missing
CATS2D_04_LLnumeric19 unique values
0 missing
CATS2D_01_DAnumeric2 unique values
0 missing
nC.N.N.numeric2 unique values
0 missing
NNRSnumeric7 unique values
0 missing
Rbridnumeric5 unique values
0 missing
RCInumeric12 unique values
0 missing
RFDnumeric12 unique values
0 missing
C.039numeric2 unique values
0 missing
MATS1vnumeric55 unique values
0 missing
CATS2D_09_LLnumeric18 unique values
0 missing
CATS2D_04_DLnumeric8 unique values
0 missing
SpMax3_Bh.p.numeric70 unique values
0 missing
SpMin4_Bh.e.numeric58 unique values
0 missing
SpMin4_Bh.i.numeric57 unique values
0 missing
CATS2D_05_DLnumeric7 unique values
0 missing
CATS2D_03_LLnumeric21 unique values
0 missing
molecule_id (row identifier)nominal104 unique values
0 missing
C.019numeric2 unique values
0 missing
C.038numeric2 unique values
0 missing
CATS2D_06_DLnumeric7 unique values
0 missing
Eig12_AEA.bo.numeric56 unique values
0 missing
SpMax4_Bh.p.numeric62 unique values
0 missing
SpMax4_Bh.v.numeric63 unique values
0 missing
SpMax3_Bh.v.numeric72 unique values
0 missing
NdsNnumeric3 unique values
0 missing
Eig02_AEA.dm.numeric61 unique values
0 missing
CATS2D_07_DDnumeric2 unique values
0 missing
CATS2D_02_LLnumeric22 unique values
0 missing
C.030numeric2 unique values
0 missing
Eig04_EA.ri.numeric90 unique values
0 missing
SpMax4_Bh.e.numeric66 unique values
0 missing
nPyrrolidinesnumeric2 unique values
0 missing

62 properties

104
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.44
Percentage of numeric attributes.
1.56
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.12
First quartile of kurtosis among attributes of the numeric type.
0.45
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.28
First quartile of skewness among attributes of the numeric type.
0.15
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.54
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.49
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.52
Second quartile (Median) of skewness among attributes of the numeric type.
0.48
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.09
Third quartile of kurtosis among attributes of the numeric type.
3.57
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.75
Third quartile of skewness among attributes of the numeric type.
1.89
Third quartile of standard deviation of attributes of the numeric type.
0.3
Average class difference between consecutive instances.
2.45
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.62
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
9.29
Maximum kurtosis among attributes of the numeric type.
10.87
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.63
Maximum skewness among attributes of the numeric type.
6.17
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.27
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.16
Mean skewness among attributes of the numeric type.
1.34
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.8
Minimum kurtosis among attributes of the numeric type.
-0.24
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.64
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task