DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075322

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075322

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1075322 (TID: 103170), and it has 666 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric422 unique values
0 missing
ATS8enumeric539 unique values
0 missing
ATS5pnumeric486 unique values
0 missing
ATS7vnumeric513 unique values
0 missing
ATS7snumeric541 unique values
0 missing
ATS7pnumeric524 unique values
0 missing
ATS7mnumeric521 unique values
0 missing
ATS7inumeric518 unique values
0 missing
ATS7enumeric521 unique values
0 missing
ATS6vnumeric492 unique values
0 missing
ATS6snumeric514 unique values
0 missing
ATS6pnumeric505 unique values
0 missing
ATS6mnumeric502 unique values
0 missing
ATS6inumeric502 unique values
0 missing
ATS6enumeric519 unique values
0 missing
ATS5vnumeric485 unique values
0 missing
ATS5snumeric503 unique values
0 missing
ATS5mnumeric496 unique values
0 missing
ATSC1pnumeric580 unique values
0 missing
ATSC2vnumeric624 unique values
0 missing
ATSC2snumeric654 unique values
0 missing
ATSC2pnumeric614 unique values
0 missing
ATSC2mnumeric632 unique values
0 missing
ATSC2inumeric476 unique values
0 missing
ATSC2enumeric415 unique values
0 missing
ATSC1vnumeric603 unique values
0 missing
ATSC1snumeric637 unique values
0 missing
ATS8inumeric535 unique values
0 missing
ATSC1mnumeric617 unique values
0 missing
ATSC1inumeric399 unique values
0 missing
ATSC1enumeric209 unique values
0 missing
ATS8vnumeric522 unique values
0 missing
ATS8snumeric543 unique values
0 missing
ATS8pnumeric533 unique values
0 missing
ATS8mnumeric549 unique values
0 missing
ATS1enumeric414 unique values
0 missing
ATS2mnumeric445 unique values
0 missing
ATS2inumeric459 unique values
0 missing
ATS2enumeric429 unique values
0 missing
ATS1vnumeric411 unique values
0 missing
ATS1snumeric417 unique values
0 missing
ATS1pnumeric398 unique values
0 missing
ATS1mnumeric434 unique values
0 missing
ATS1inumeric431 unique values
0 missing
ATS2pnumeric428 unique values
0 missing
ARRnumeric187 unique values
0 missing
AMWnumeric567 unique values
0 missing
AMRnumeric638 unique values
0 missing
ALOGP2numeric635 unique values
0 missing
ALOGPnumeric594 unique values
0 missing
AECCnumeric527 unique values
0 missing
AACnumeric401 unique values
0 missing
SM09_EA.dm.numeric167 unique values
0 missing
ATS3vnumeric437 unique values
0 missing
ATS5inumeric514 unique values
0 missing
ATS5enumeric502 unique values
0 missing
ATS4vnumeric463 unique values
0 missing
ATS4snumeric498 unique values
0 missing
ATS4pnumeric460 unique values
0 missing
ATS4mnumeric480 unique values
0 missing
ATS4inumeric498 unique values
0 missing
ATS4enumeric499 unique values
0 missing
molecule_id (row identifier)nominal666 unique values
0 missing
ATS3snumeric448 unique values
0 missing
ATS3pnumeric445 unique values
0 missing
ATS3mnumeric438 unique values
0 missing
ATS3inumeric479 unique values
0 missing
ATS3enumeric472 unique values
0 missing
ATS2vnumeric427 unique values
0 missing
ATS2snumeric464 unique values
0 missing

62 properties

666
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.57
Percentage of numeric attributes.
1.43
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.25
First quartile of kurtosis among attributes of the numeric type.
3.92
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.7
First quartile of skewness among attributes of the numeric type.
0.24
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.63
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.51
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.55
Second quartile (Median) of skewness among attributes of the numeric type.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.39
Third quartile of kurtosis among attributes of the numeric type.
5.58
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0
Third quartile of skewness among attributes of the numeric type.
0.54
Third quartile of standard deviation of attributes of the numeric type.
0.37
Average class difference between consecutive instances.
7.07
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.11
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
47.32
Maximum kurtosis among attributes of the numeric type.
111.61
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.4
Maximum skewness among attributes of the numeric type.
33.05
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
3.31
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.35
Mean skewness among attributes of the numeric type.
1.68
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1
Minimum kurtosis among attributes of the numeric type.
0.09
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.19
Minimum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task