DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5604

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5604

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5604 (TID: 101030), and it has 103 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric24 unique values
0 missing
N.073numeric4 unique values
0 missing
P_VSA_m_3numeric52 unique values
0 missing
CATS2D_03_AAnumeric6 unique values
0 missing
Rbridnumeric5 unique values
0 missing
NNRSnumeric12 unique values
0 missing
SpDiam_AEA.bo.numeric89 unique values
0 missing
JGI2numeric40 unique values
0 missing
RFDnumeric25 unique values
0 missing
RCInumeric25 unique values
0 missing
MAXDPnumeric102 unique values
0 missing
MAXDNnumeric102 unique values
0 missing
SM14_AEA.ri.numeric91 unique values
0 missing
Eig04_EA.bo.numeric91 unique values
0 missing
JGI7numeric14 unique values
0 missing
P_VSA_e_3numeric67 unique values
0 missing
Eig03_EA.ri.numeric84 unique values
0 missing
GATS3pnumeric86 unique values
0 missing
SAdonnumeric37 unique values
0 missing
P_VSA_MR_6numeric93 unique values
0 missing
CATS2D_04_AAnumeric7 unique values
0 missing
JGI4numeric27 unique values
0 missing
nABnumeric18 unique values
0 missing
MATS8pnumeric92 unique values
0 missing
SpMin2_Bh.e.numeric74 unique values
0 missing
H.050numeric7 unique values
0 missing
Hynumeric89 unique values
0 missing
nHDonnumeric7 unique values
0 missing
nSnumeric3 unique values
0 missing
Eig03_EA.dm.numeric18 unique values
0 missing
SpMax1_Bh.m.numeric73 unique values
0 missing
MATS4inumeric86 unique values
0 missing
P_VSA_LogP_6numeric52 unique values
0 missing
P_VSA_s_3numeric100 unique values
0 missing
P_VSA_MR_7numeric48 unique values
0 missing
C.044numeric2 unique values
0 missing
NaasCnumeric11 unique values
0 missing
SpMax1_Bh.s.numeric36 unique values
0 missing
MATS3vnumeric92 unique values
0 missing
SaaSnumeric30 unique values
0 missing
nThiazolesnumeric2 unique values
0 missing
C.031numeric2 unique values
0 missing
C.028numeric4 unique values
0 missing
NaaSnumeric2 unique values
0 missing
P_VSA_LogP_4numeric75 unique values
0 missing
nPyrazinesnumeric2 unique values
0 missing
H.049numeric5 unique values
0 missing
NaaNnumeric6 unique values
0 missing
N.075numeric6 unique values
0 missing
SaaNnumeric89 unique values
0 missing
C.027numeric5 unique values
0 missing
molecule_id (row identifier)nominal103 unique values
0 missing
P_VSA_i_1numeric9 unique values
0 missing
GATS8mnumeric98 unique values
0 missing
GATS3vnumeric88 unique values
0 missing
ATSC5snumeric103 unique values
0 missing
MATS3pnumeric93 unique values
0 missing
Eta_alpha_Anumeric43 unique values
0 missing
SpMax2_Bh.i.numeric77 unique values
0 missing
S.107numeric3 unique values
0 missing
P_VSA_LogP_3numeric50 unique values
0 missing
SpMax2_Bh.v.numeric81 unique values
0 missing
GATS8pnumeric97 unique values
0 missing
SaasCnumeric103 unique values
0 missing
SpMax2_Bh.e.numeric73 unique values
0 missing
GATS5inumeric91 unique values
0 missing
CATS2D_04_DLnumeric10 unique values
0 missing

62 properties

103
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.69
First quartile of kurtosis among attributes of the numeric type.
0.44
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.17
First quartile of skewness among attributes of the numeric type.
0.13
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.14
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.83
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.54
Second quartile (Median) of skewness among attributes of the numeric type.
0.62
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.2
Third quartile of kurtosis among attributes of the numeric type.
5.23
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.98
Third quartile of skewness among attributes of the numeric type.
2.02
Third quartile of standard deviation of attributes of the numeric type.
0.6
Average class difference between consecutive instances.
11.73
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.65
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
50.89
Maximum kurtosis among attributes of the numeric type.
100.16
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
6.64
Maximum skewness among attributes of the numeric type.
44.77
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.36
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.68
Mean skewness among attributes of the numeric type.
5.61
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.63
Minimum kurtosis among attributes of the numeric type.
-0.09
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.23
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task